[1]刘方,杨宏伟,邓付洁.掺氢天然气输送用X65管线钢的氢脆行为[J].油气储运,2024,43(03):289-295.[doi:10.6047/j.issn.1000-8241.2024.03.005]
 LIU Fang,YANG Hongwei,DENG Fujie.Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas[J].Oil & Gas Storage and Transportation,2024,43(03):289-295.[doi:10.6047/j.issn.1000-8241.2024.03.005]
点击复制

掺氢天然气输送用X65管线钢的氢脆行为

参考文献/References:

[1] 张翼.能源转型加速逐“绿”前行[N].光明日报,2023-05-18(15). ZHANG Y. Accelerating energy transformation and moving forward with “green”[N]. Guangming Daily, 2023-05-18(15).
[2] 李敬法,苏越,张衡,宇波.掺氢天然气管道输送研究进展[J].天然气工业,2021,41(4):137-152. 10.3787/j.issn.1000-0976. 2021.04.015. LI J F, SU Y, ZHANG H, YU B. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4): 137-152.
[3] 李凤,董绍华,陈林,朱喜平,韩子从.掺氢天然气长距离管道输送安全关键技术与进展[J].力学与实践,2023,45(2):230-244. 10.6052/1000-0879-22-579. LI F, DONG S H, CHEN L, ZHU X P, HAN Z C. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas[J]. Mechanics in Engineering, 2023, 45(2): 230-244.
[4] CHEHADE Z, MANSILLA C, LUCCHESE P, HILLIARD S,PROOST J. Review and analysis of demonstration projects on power-to-X pathways in the world[J]. International Journal of Hydrogen Energy, 2019, 44(51): 27637-27655. DOI: 10.1016/j.ijhydene. 2019.08.260.
[5] 尚娟,鲁仰辉,郑津洋,孙晨,花争立,于文涛,等.掺氢天然气管道输送研究进展和挑战[J].化工进展,2021,40(10):5499-5505. 10.16085/j.issn.1000-6613.2020-2140. SHANG J, LU Y H, ZHENG J Y, SUN C, HUA Z L, YU W T, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499-5505.
[6] 刘伦,韩毅.天然气管道掺氢输送条件和应用场景展望[J].云南化工,2022,49(8):70-72,87. 10.3969/j.issn.1004-275X.2022. 08.21. LIU L, HAN Y. Prospect of condition and application of hydrogen-doped natural gas pipeline transportation[J]. Yunnan Chemical Technology, 2022, 49(8): 70-72, 87.
[7] 陈林,董绍华,李凤,张行.氢环境下压力容器及管道材料相容性研究进展[J].力学与实践,2022,44(3):503-518. 10. 6052/1000-0879-22-075. CHEN L, DONG S H, LI F, ZHANG H. Some advances in studies of material compatibility of pressure vessels and pipelines in hydrogen atmosphere[J]. Mechanics in Engineering, 2022, 44(3): 503-518.
[8] THOMAS S, OTT N, SCHALLER R F, YUWONO J A, VOLOVITCH P, SUNDARARAJAN G, et al. The effect of absorbed hydrogen on the dissolution of steel[J]. Heliyon, 2016, 2(12): e00209. DOI: 10.1016/j.heliyon.2016.e00209.
[9] LI H Y, NIU R M, LI W, LU H Z, CAIRNEY J, CHEN Y S. Hydrogen in pipeline steels: recent advances in characterization and embrittlement mitigation[J]. Journal of Natural Gas Science and Engineering, 2022, 105: 104709. DOI: 10.1016/j.jngse.2022. 104709.
[10] LAUREYS A, DEPRAETERE R, CAUWELS M, DEPOVER T, HERTEL? S, VERBEKEN K. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: a review of factors affecting hydrogen induced degradation[J]. Journal of Natural Gas Science and Engineering, 2022, 101:104534. DOI: 10.1016/j.jngse.2022.104534.
[11] DWIVEDI S K, VISHWAKARMA M. Hydrogen embrittlement in different materials: a review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616. DOI:10.1016/j.ijhydene.2018.09.201.
[12] ZHAO W M, ZHANG T M, HE Z R, SUN J B, WANG Y. Determination of the critical plastic strain-induced stress of X80 steel through an electrochemical hydrogen permeation method[J]. Electrochimica acta, 2016, 214: 336-344. DOI:10.1016/j.electacta.2016.08.026.
[13] SHANG J, ZHENG J Y, HUA Z L, LI Y H, GU C H, CUI T C, et al. Effects of stress concentration on the mechanical properties of X70 in high-pressure hydrogen-containing gas mixtures[J]. International Journal of Hydrogen Energy, 2020, 45(52):28204-28215. DOI: 10.1016/j.ijhydene.2020.02.125.
[14] MOHTADI-BONAB M A, SZPUNAR J A, BASU R, ESKANDARI M. The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel[J]. International Journal of Hydrogen Energy, 2015, 40(2): 1096-1107. DOI: 10.1016/j.ijhydene.2014. 11.057.
[15] 伍其兵,张行,张萌,张笑影,董绍华.基于知识图谱的掺氢天然气管输研究现状与演进趋势[J].油气储运,2022,41(12):1380-1394. 10.6047/j.issn.1000-8241.2022.12.004. WU Q B, ZHANG H, ZHANG M, ZHANG X Y, DONG S H. Research status and evolution trend of pipeline transportation of hydrogen-blended natural gas based on knowledge graph[J]. Oil & Gas Storage and Transportation, 2022, 41(12):1380-1394.
[16] NGUYEN T T, PARK J, KIM W S, NAHM S H, BEAK U B. Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2368-2381. DOI:10.1016/j.ijhydene.2019.11.013.
[17] ZHANG S, LI J, AN T, ZHENG S Q, YANG K, LV L, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20621-20629. DOI: 10.1016/j.ijhydene. 2021.03.183.
[18] AN T, ZHANG S, FENG M, LUO B W, ZHENG S Q, CHEN L Q, et al. Synergistic action of hydrogen gas and weld defects on fracture toughness of X80 pipeline steel[J]. International Journal of Fatigue, 2019, 120: 23-32. DOI: 10.1016/j.ijfatigue. 2018.10.021.
[19] WANG G, YAN Y, LI J X, HUANG J Y, QIAO L J, VOLINSKY A A. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel[J]. Materials Science and Engineering A, 2013, 586: 142-148. DOI: 10.1016/j.msea.2013. 07.097.
[20] 杨兆艳,闫永贵,马力,张桂玲.阴极极化对907钢氢脆敏感性的影响[J].腐蚀与防护,2009,30(10):701-703. YANG Z Y, YAN Y G, MA L, ZHANG G L. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 907 steel[J]. Corrosion and Protection, 2009, 30(10): 701-703.
[21] PETCH N J, STABLES P. Delayed fracture of metals under static load[J]. Nature, 1952, 169(4307): 842-843.

相似文献/References:

[1]付安庆,吕乃欣,白真权,等.交流杂散电流对长输管线钢腐蚀行为的影响[J].油气储运,2014,33(7):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
 FU Anqing,LYU Naixin,BAI Zhenquan,et al.Impacts of AC stray current on the corrosion behavior of pipe steel for long-distance pipeline[J].Oil & Gas Storage and Transportation,2014,33(03):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
[2]郭磊,姜珊,彭常飞,等.X80 与X100 级管线钢裂纹扩展模拟分析[J].油气储运,2014,33(10):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
 GUO Lei,JIANG Shan,PENG Changfei,et al.A simulation analysis of crack growth for X80 and X100 pipeline steels[J].Oil & Gas Storage and Transportation,2014,33(03):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
[3]樊学华,李向阳,董磊,等.国内抗大变形管线钢研究及应用进展[J].油气储运,2015,34(3):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
 FAN Xuehua,LI Xiangyang,DONG Lei,et al.Progress in research and application of pipeline steels with high deformation resistance in China[J].Oil & Gas Storage and Transportation,2015,34(03):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
[4]张冬娜,戚东涛,邵晓东,等.复合材料增强管线钢管结构设计[J].油气储运,2017,36(10):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
 ZHANG Dongna,QI Dongtao,SHAO Xiaodong,et al.Structural design of composite reinforced line pipe[J].Oil & Gas Storage and Transportation,2017,36(03):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
[5]王琴,李文昊,伍奕,等.X80钢组织状态对CO抑制氢脆作用的影响[J].油气储运,2022,41(03):302.[doi:10.6047/j.issn.1000-8241.2022.03.008]
 WANG Qin,LI Wenhao,WU Yi,et al.The effect of X80 steel microstructure on CO inhibition of hydrogen embrittlement[J].Oil & Gas Storage and Transportation,2022,41(03):302.[doi:10.6047/j.issn.1000-8241.2022.03.008]
[6]许未晴,鲁仰辉,孙晨,等.天然气掺氢输送系统氢脆研究进展[J].油气储运,2022,41(10):1130.[doi:10.6047/j.issn.1000-8241.2022.10.002]
 XU Weiqing,LU Yanghui,SUN Chen,et al.Research progress on hydrogen embrittlement in hydrogen-blended natural gas transportation system[J].Oil & Gas Storage and Transportation,2022,41(03):1130.[doi:10.6047/j.issn.1000-8241.2022.10.002]
[7]刘宇,张立忠,高维新.管线钢的历史沿革及未来展望[J].油气储运,2022,41(12):1355.[doi:10.6047/j.issn.1000-8241.2022.12.001]
 LIU Yu,ZHANG Lizhong,GAO Weixin.Historical development and future prospects of pipeline steel[J].Oil & Gas Storage and Transportation,2022,41(03):1355.[doi:10.6047/j.issn.1000-8241.2022.12.001]
[8]程玉峰.高压氢气管道氢脆问题明晰[J].油气储运,2023,42(01):1.[doi:10.6047/j.issn.1000-8241.2023.01.001]
 CHENG Yufeng.Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments[J].Oil & Gas Storage and Transportation,2023,42(03):1.[doi:10.6047/j.issn.1000-8241.2023.01.001]
[9]刘刚,崔振莹,魏甲强,等.掺氢天然气环境CH4对管线钢氢脆的抑制行为[J].油气储运,2023,42(01):16.[doi:10.6047/j.issn.1000-8241.2023.01.003]
 LIU Gang,CUI Zhenying,WEI Jiaqiang,et al.Inhibition of hydrogen embrittlement induced by CH4 in pipeline transportation of hydrogen-natural gas mixtures[J].Oil & Gas Storage and Transportation,2023,42(03):16.[doi:10.6047/j.issn.1000-8241.2023.01.003]
[10]任鹏炜,唐兴颖,覃祖安,等.深海环境因素对管线钢腐蚀行为影响研究进展[J].油气储运,2023,42(05):492.[doi:10.6047/j.issn.1000-8241.2023.05.002]
 REN Pengwei,TANG Xingying,QIN Zu&apos,et al.Research progress of the influence of deep-sea environment factors on corrosion behavior of pipeline steel[J].Oil & Gas Storage and Transportation,2023,42(03):492.[doi:10.6047/j.issn.1000-8241.2023.05.002]
[11]李玉星,张睿,刘翠伟,等.掺氢天然气管道典型管线钢氢脆行为[J].油气储运,2022,41(06):732.[doi:10.6047/j.issn.1000-8241.2022.06.015]
 LI Yuxin,ZHANG Rui,LIU Cuiwei,et al.Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel[J].Oil & Gas Storage and Transportation,2022,41(03):732.[doi:10.6047/j.issn.1000-8241.2022.06.015]
[12]苟金鑫,聂如煜,邢潇,等.临氢X80管线钢量化氢压作用的疲劳裂纹扩展模型[J].油气储运,2023,42(07):754.[doi:10.6047/j.issn.1000-8241.2023.07.004]
 GOU Jinxin,NIE Ruyu,XING Xiao,et al.Fatigue crack growth model of X80 pipeline steel in hydrogen environment for quantification of hydrogen pressure effect[J].Oil & Gas Storage and Transportation,2023,42(03):754.[doi:10.6047/j.issn.1000-8241.2023.07.004]
[13]杜建伟,明洪亮,王俭秋.输氢管道氢脆研究现状及进展[J].油气储运,2023,42(10):1107.[doi:10.6047/j.issn.1000-8241.2023.10.004]
 DU Jianwei,MING Hongliang,WANG Jianqiu.Research status and progress of hydrogen embrittlement of hydrogen pipelines[J].Oil & Gas Storage and Transportation,2023,42(03):1107.[doi:10.6047/j.issn.1000-8241.2023.10.004]
[14]刘方 杨宏伟 邓付洁.掺氢天然气输送用X65管线钢的氢脆行为[J].油气储运,2024,43(01):1.
 LIU Fang,YANG Hongwei,DENG Fujie.Hydrogen embrittlement behavior of X65 pipeline steel for hydrogen doped natural gas transportation[J].Oil & Gas Storage and Transportation,2024,43(03):1.
[15]王宇辰,吴倩,刘欢,等.管线钢氢相容性测试方法及氢脆防控研究进展[J].油气储运,2023,42(11):1251.[doi:10.6047/j.issn.1000-8241.2023.11.005]
 WANG Yuchen,WU Qian,LIU Huan,et al.Research progress of hydrogen compatibility testing methods and hydrogen embrittlement prevention measures for pipeline steel[J].Oil & Gas Storage and Transportation,2023,42(03):1251.[doi:10.6047/j.issn.1000-8241.2023.11.005]
[16]宋雨霖,李玉星.氢气在管线钢上的解离吸附机制及影响因素研究进展[J].油气储运,2024,43(11):1.
 SONG Yulin,LI Yuxing.Research Progress on Dissociative Adsorption Mechanism and Influencing Factors of Hydrogen on Pipeline Steel[J].Oil & Gas Storage and Transportation,2024,43(03):1.
[17]宋雨霖,李玉星.氢气在管线钢表面的解离吸附机制及影响因素研究进展[J].油气储运,2024,43(11):1212.[doi:10.6047/j.issn.1000-8241.2024.11.002]
 SONG Yulin,LI Yuxing.Research review of the mechanism and influencing factors in dissociative adsorption of hydrogen on pipeline steel surface[J].Oil & Gas Storage and Transportation,2024,43(03):1212.[doi:10.6047/j.issn.1000-8241.2024.11.002]

备注/Memo

刘方,男,1980年生,高级工程师,2009年硕士毕业于中国石油大学(华东)油气储运工程专业,现主要从事天然气输送管道设计方向的研究工作。地址:北京市朝阳区太阳宫南街6号院C座911室,100028。电话:010-84526512。Email:liufang9@cnooc.com.cn
基金项目:中国海洋石油集团有限公司科技项目“含氢天然气高压输送管道适用性研究”,CNOOC-KX135KXXMQD2020-009。
· Received: 2023-07-11 · Revised: 2023-08-26 · Online: 2023-11-24

更新日期/Last Update: 2024-03-25