[1]高山卜,钱成文,张沛,等.基于改进的BP神经网络管输能耗预测模型[J].油气储运,2014,33(8):869-872.[doi:10.6047/j.issn.1000-8241.2014.08.014]
 GAO Shanbu,QIAN Chengwen,ZHANG Pei,et al.Prediction model of pipeline energy consumption based on improved BP neural network[J].Oil & Gas Storage and Transportation,2014,33(8):869-872.[doi:10.6047/j.issn.1000-8241.2014.08.014]
点击复制

基于改进的BP神经网络管输能耗预测模型

参考文献/References:

[1]李晓宇,于树青,高爱茹,等.原油管输能耗预测方法研究[J].油气储运, 2009, 28 (6):64-68.

 LI X Y,YU S Q,GAO A R,et al.Study on prediction method of energy consumption in crude oil pipelines[J].Oil and Gas Storage and Transportation, 2009, 28 (6):64-68.

[2]丁云辉,隋富娟.原油长输管道油电损耗的回归预测[J].天然气与石油, 2009, 22 (2):61-63.

 DING Y H,SUI F J.Regression forecast of oil/power consumption in long distance oil pipeline[J].Natural Gas and Oil, 2009, 22 (2):61-63.

[3]隋富娟,吴明,安丙威,等. 管道油电损耗的灰色模型及预测[J]. 天然气与石油, 2003, 21 (4):10-12.

 SUI F J,WU M,AN B W,et al. Gray model of consumption on electricity and fuel oil of oil pipeline and forecasting[J]. Natural Gas and Oil, 2003, 21 (4):10-12.

[4]苏欣,袁宗明,范小霞,等. 基于普通累积法的原油管道油电损耗预测[J].新疆石油天然气, 2005, 1 (3):90-93.

 SU X,YUAN Z M,FAN X X,et al. Forecast of oil and power loss of crude oil pipelines based on generalaccumulation method[J].Xinjiang Oil&Gas, 2005, 1 (3):90-93.

[5]刘雯.浅谈影响热油管道能耗的主要因素[J]. 管道技术与设备,2001 (3): 1-17

 LIU W.Elementary introduction to affect primary factoron the energy consumption in the hot oil pipeline[J]. Pipeline Technique and Equipment,2001 (3): 1-17

[6]张秀杰. 热油管道节能影响因素与根本途径[J]. 油气储运,2010, 29 (11):810-814.

 ZHANG X J. Impacting factors and solution method for energy saving of hot oil transportation pipelines[J]. Oil and Gas Storage and Transportation,2010, 29 (11):810-814.

[7]喻伟,李百战,杨明宇,等. 基于人工神经网络的建筑多目标预测模型[J]. 中南大学学报(自然科学版), 2012, 43 (12): 4949-4955. 

 YU W,LI B Z,YANG M Y,et al. Building multi-objective predicting model based on artificial neural network[J].Journal of Central South University (Science and Technology), 2012, 43 (12): 4949-4955. 

[8]张全,刘渺,凌振华,等.钢铁企业能耗预测系统的设计[J].冶金动力, 2008 (2):67-70.

 ZHANG Q,LIU M,LING Z H,et al.Design of energy consumption prediction system of iron and steel enterprises[J].Metallurgical Power, 2008 (2):67-70.

[9]韩庆虹,金永龙,张军红. 人工神经网络在烧结固体燃耗预测中的应用[J].冶金能源, 2005, 24 (2):9-11.

 HAN Q H,JIN Y L,ZHANG J H. Application of neural networks in the predictionof solid fuel consumption in sintering process[J]. Energy For Metallurgical Industry, 2005, 24 (2):9-11.

[10]郑洪川,李红艳,贾林祥. 基于神经网络的 CO2-MDEA-PZ-H2O体系相平衡计算[J].节能技术, 2008, 26 (3):226-227.

 ZHENG H C,LI H Y,JIA L X. Calculation of phase equilibrium for CO2- MDEA- PZ- H2Osystem based on BP artificial neural network[J].Energy Conservation Technology, 2008, 26 (3):226-227.

[11]ALIREZA K, REZA A R, LU T L, et al.ANNSTL F-Neural network based electric load forecasting system[J].IEE Transactions on Neural Networks, 1997, 8(4):835-845.
[12]YUTAKA F, HIDEO M, HARUYUKI M, et al.A modif back propagation method to avoid false local minima[J].Neu Networks, 1998, 11(6):1059-1072.

[13]侯磊,许新裕,崔金山,等. 基于 BP 神经网络的输油管道能耗预测方法[J].节能技术, 2009, 27 (5):401-406.

 HOU L,XU X Y,CUI J S,et al. A prediction method of energy consumptionfor oil pipeline based on BP neural network[J]. Energy Conservation Technology, 2009, 27 (5):401-406.

[14]孙帆,施学勤. 基于 MATLAB 的 BP 神经网络设计[J]. 计算机与数字工程, 2007, 35 (8):124-126.

 SUN F,SHI X Q. Design ofBP networks based onMATLAB[J]. Computer & Digital Engineering, 2007, 35 (8):124-126.

[15]张甲,兴长策,岳旭东,等. 神经网络模型在脱氮预报中的应用[J].辽宁工学院学报, 2000, 20 (2):1-3.

 ZHANG J,XING C C,YUE X D,et al. Application of neural network to predicting nitrogen content[J].Journal Of Liaoning Institute Of Technology On Social Science, 2000, 20 (2):1-3.

[16]吴仕勇. 基于数值计算方法的 BP 神经网络及遗传算法的优化研究[D].昆明:云南师范大学, 2006.

 WU S Y. Optimization research of BP neutral network and genetic algorithm based on numerical calculation method[D].Kunming:Yunnan Normal University, 2006.

相似文献/References:

[1]赵会军,张青松,张国忠,等.基于BP神经网络顺序输送混油粘度预测[J].油气储运,2007,26(12):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
 ZHAO Huijun,ZHANG Qingsong.Study on Contamination Viscosity in Batch Transportation Based on the BP Neural Network[J].Oil & Gas Storage and Transportation,2007,26(8):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
[2]付道明,孙军,贺志刚,等.预测腐蚀管道剩余强度的新方法[J].油气储运,2004,23(4):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
 FU Daoming,SUN Jun.A New method to Predict Residual Strength of Corrosion Pipelines[J].Oil & Gas Storage and Transportation,2004,23(8):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
[3]喻西崇,赵金洲,纪录军,等.利用神经网络分析注水管道内腐蚀影响因素[J].油气储运,2003,22(2):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
 YU Xichong,ZHAO Jinzhou.Corrosion Influence Factors Analysis Using Neural Network for Injecting Pipeline[J].Oil & Gas Storage and Transportation,2003,22(8):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
[4]刘刚,周志龙,王正涛,等.改进BP神经网络在管道腐蚀速率预测中的应用[J].油气储运,2006,25(4):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
 LIU Gang,ZHOU Zhilong.The Application of the Improved BP Neural Network in Prediction of Pipeline Corrosion Rate[J].Oil & Gas Storage and Transportation,2006,25(8):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
[5]郑倩 张宏 刘啸奔.基于BP-MC方法的断层区管道的可靠性分析[J].油气储运,2019,38(12):1.
 ZHENG Qian,ZHANG Hong,LIU Xiaoben.Reliability analysis of pipeline in fault area based on BP-MC method[J].Oil & Gas Storage and Transportation,2019,38(8):1.
[6]徐长航,刘鹏谦,李振兴,等.基于声发射信号的气液两相流管道泄漏识别方法[J].油气储运,2021,40(10):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
 XU Changhang,LIU Pengqian,LI Zhenxing,et al.Leakage identification method of gas-liquid two-phase flow pipeline based on acoustic emission signal[J].Oil & Gas Storage and Transportation,2021,40(8):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
[7]肖荣鸽,刘博,王勤学,等.基于GRA-ABC-BPNN模型的城市燃气日负荷预测[J].油气储运,2022,41(08):987.[doi:10.6047/j.issn.1000-8241.2022.08.015]
 XIAO Rongge,LIU Bo,WANG Qinxue,et al.Daily load forecasting of urban gas based on GRA-ABC-BPNN model[J].Oil & Gas Storage and Transportation,2022,41(8):987.[doi:10.6047/j.issn.1000-8241.2022.08.015]
[8]孙天礼,韩雪,黄仕林,等.元坝高酸性气田地面管道内腐蚀预测[J].油气储运,2023,42(01):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
 SUN Tianli,HAN Xue,HUANG Shilin,et al.Internal corrosion prediction of ground pipeline of Yuanba high-sour gasfield[J].Oil & Gas Storage and Transportation,2023,42(8):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
[9]温泉,石小平,张利分,等.基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J].油气储运,2023,42(06):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
 WEN Quan,SHI Xiaoping,ZHANG Lifen,et al.APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting[J].Oil & Gas Storage and Transportation,2023,42(8):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
[10]刘真 潘文菊 刘佳 温凯 宫敬.基于聚类改进的区域天然气长期需求组合预测[J].油气储运,2023,42(11):1.
 LIU Zhen,PAN Wenju,LIU Jia,et al.Improved combination forecasting model for regional natural gas long-term consumption based on clustering algorithm[J].Oil & Gas Storage and Transportation,2023,42(8):1.

备注/Memo

收稿日期:2013-8-19;改回日期:2014-5-30。
作者简介:高山卜,助理工程师,1986年生,2012年硕士毕业于西南石油大学油气储运专业,现主要从事油气管道信息与规划研究工作。Tel:0316-2176940,Email:365311351@qq.com

更新日期/Last Update: 1900-01-01