网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
输油管道能耗指标受多种因素影响,为准确预测输油管道的能耗值,选择具有自组织、自适应能力且能逼近任意非线性连续映射的BP神经网络创建能耗预测模型;为提高模型的泛化能力,在传统的BP神经网络计算过程中加入误差控制公式,最终建立了基于改进的BP神经网络原油管道能耗预测模型。选用某输油管道运行能耗数据作为样本,为提高计算收敛速度和精度,对样本数据进行预处理,对建立的能耗预测模型进行训练和验证,得到该模型的模拟误差在2.77%以内,且模拟值能够真实反映真实值的变化趋势。将该模型推广至某天然气管道进行能耗预测,结果表明:其能够准确预测天然气管输能耗情况,预测误差不超过4.06%。因此,该模型适用于油气管输能耗预测,为管输能耗提供了一种新的预测方法。
Energy consumption of oil pipeline is affected by many factors.To predict the energy consumption accurately, the BP neural network,which is capable of self-organizing,self-adaptation,and approximating any nonlinear continuous mapping,is adopted to build a prediction model.In order to make the model more generalized,the error control formula is added in the computing process with traditional BP neural network.Finally,a prediction model of crude oil pipeline is obtained based on improved BP neural network.This model is applied to the samples of energy consumption taken from a pipeline,which are pre-processed in order to improve the convergence speed and accuracy.The results show that the simulation error of the model is within 2.77%,and the analog value can truly reflect the true value.Then,the model is promoted to a natural gas pipeline,indicating that the model can accurately predict the energy consumption of natural gas pipeline,with error not more than 4.06%.Therefore,this model,as a new method,is applicable to predicting the energy consumption of oil and gas pipelines.
[1]李晓宇,于树青,高爱茹,等.原油管输能耗预测方法研究[J].油气储运, 2009, 28 (6):64-68.
LI X Y,YU S Q,GAO A R,et al.Study on prediction method of energy consumption in crude oil pipelines[J].Oil and Gas Storage and Transportation, 2009, 28 (6):64-68.
[2]丁云辉,隋富娟.原油长输管道油电损耗的回归预测[J].天然气与石油, 2009, 22 (2):61-63.
DING Y H,SUI F J.Regression forecast of oil/power consumption in long distance oil pipeline[J].Natural Gas and Oil, 2009, 22 (2):61-63.
[3]隋富娟,吴明,安丙威,等. 管道油电损耗的灰色模型及预测[J]. 天然气与石油, 2003, 21 (4):10-12.
SUI F J,WU M,AN B W,et al. Gray model of consumption on electricity and fuel oil of oil pipeline and forecasting[J]. Natural Gas and Oil, 2003, 21 (4):10-12.
[4]苏欣,袁宗明,范小霞,等. 基于普通累积法的原油管道油电损耗预测[J].新疆石油天然气, 2005, 1 (3):90-93.
SU X,YUAN Z M,FAN X X,et al. Forecast of oil and power loss of crude oil pipelines based on generalaccumulation method[J].Xinjiang Oil&Gas, 2005, 1 (3):90-93.
[5]刘雯.浅谈影响热油管道能耗的主要因素[J]. 管道技术与设备,2001 (3): 1-17
LIU W.Elementary introduction to affect primary factoron the energy consumption in the hot oil pipeline[J]. Pipeline Technique and Equipment,2001 (3): 1-17
[6]张秀杰. 热油管道节能影响因素与根本途径[J]. 油气储运,2010, 29 (11):810-814.
ZHANG X J. Impacting factors and solution method for energy saving of hot oil transportation pipelines[J]. Oil and Gas Storage and Transportation,2010, 29 (11):810-814.
[7]喻伟,李百战,杨明宇,等. 基于人工神经网络的建筑多目标预测模型[J]. 中南大学学报(自然科学版), 2012, 43 (12): 4949-4955.
YU W,LI B Z,YANG M Y,et al. Building multi-objective predicting model based on artificial neural network[J].Journal of Central South University (Science and Technology), 2012, 43 (12): 4949-4955.
[8]张全,刘渺,凌振华,等.钢铁企业能耗预测系统的设计[J].冶金动力, 2008 (2):67-70.
ZHANG Q,LIU M,LING Z H,et al.Design of energy consumption prediction system of iron and steel enterprises[J].Metallurgical Power, 2008 (2):67-70.
[9]韩庆虹,金永龙,张军红. 人工神经网络在烧结固体燃耗预测中的应用[J].冶金能源, 2005, 24 (2):9-11.
HAN Q H,JIN Y L,ZHANG J H. Application of neural networks in the predictionof solid fuel consumption in sintering process[J]. Energy For Metallurgical Industry, 2005, 24 (2):9-11.
[10]郑洪川,李红艳,贾林祥. 基于神经网络的 CO2-MDEA-PZ-H2O体系相平衡计算[J].节能技术, 2008, 26 (3):226-227.
ZHENG H C,LI H Y,JIA L X. Calculation of phase equilibrium for CO2- MDEA- PZ- H2Osystem based on BP artificial neural network[J].Energy Conservation Technology, 2008, 26 (3):226-227.
[11]ALIREZA K, REZA A R, LU T L, et al.ANNSTL F-Neural network based electric load forecasting system[J].IEE Transactions on Neural Networks, 1997, 8(4):835-845.
[12]YUTAKA F, HIDEO M, HARUYUKI M, et al.A modif back propagation method to avoid false local minima[J].Neu Networks, 1998, 11(6):1059-1072.
[13]侯磊,许新裕,崔金山,等. 基于 BP 神经网络的输油管道能耗预测方法[J].节能技术, 2009, 27 (5):401-406.
HOU L,XU X Y,CUI J S,et al. A prediction method of energy consumptionfor oil pipeline based on BP neural network[J]. Energy Conservation Technology, 2009, 27 (5):401-406.
[14]孙帆,施学勤. 基于 MATLAB 的 BP 神经网络设计[J]. 计算机与数字工程, 2007, 35 (8):124-126.
SUN F,SHI X Q. Design ofBP networks based onMATLAB[J]. Computer & Digital Engineering, 2007, 35 (8):124-126.
[15]张甲,兴长策,岳旭东,等. 神经网络模型在脱氮预报中的应用[J].辽宁工学院学报, 2000, 20 (2):1-3.
ZHANG J,XING C C,YUE X D,et al. Application of neural network to predicting nitrogen content[J].Journal Of Liaoning Institute Of Technology On Social Science, 2000, 20 (2):1-3.
[16]吴仕勇. 基于数值计算方法的 BP 神经网络及遗传算法的优化研究[D].昆明:云南师范大学, 2006.
WU S Y. Optimization research of BP neutral network and genetic algorithm based on numerical calculation method[D].Kunming:Yunnan Normal University, 2006.
[1]赵会军,张青松,张国忠,等.基于BP神经网络顺序输送混油粘度预测[J].油气储运,2007,26(12):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
ZHAO Huijun,ZHANG Qingsong.Study on Contamination Viscosity in Batch Transportation Based on the BP Neural Network[J].Oil & Gas Storage and Transportation,2007,26(8):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
[2]付道明,孙军,贺志刚,等.预测腐蚀管道剩余强度的新方法[J].油气储运,2004,23(4):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
FU Daoming,SUN Jun.A New method to Predict Residual Strength of Corrosion Pipelines[J].Oil & Gas Storage and Transportation,2004,23(8):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
[3]喻西崇,赵金洲,纪录军,等.利用神经网络分析注水管道内腐蚀影响因素[J].油气储运,2003,22(2):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
YU Xichong,ZHAO Jinzhou.Corrosion Influence Factors Analysis Using Neural Network for Injecting Pipeline[J].Oil & Gas Storage and Transportation,2003,22(8):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
[4]刘刚,周志龙,王正涛,等.改进BP神经网络在管道腐蚀速率预测中的应用[J].油气储运,2006,25(4):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
LIU Gang,ZHOU Zhilong.The Application of the Improved BP Neural Network in Prediction of Pipeline Corrosion Rate[J].Oil & Gas Storage and Transportation,2006,25(8):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
[5]郑倩 张宏 刘啸奔.基于BP-MC方法的断层区管道的可靠性分析[J].油气储运,2019,38(12):1.
ZHENG Qian,ZHANG Hong,LIU Xiaoben.Reliability analysis of pipeline in fault area based on BP-MC method[J].Oil & Gas Storage and Transportation,2019,38(8):1.
[6]徐长航,刘鹏谦,李振兴,等.基于声发射信号的气液两相流管道泄漏识别方法[J].油气储运,2021,40(10):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
XU Changhang,LIU Pengqian,LI Zhenxing,et al.Leakage identification method of gas-liquid two-phase flow pipeline based on acoustic emission signal[J].Oil & Gas Storage and Transportation,2021,40(8):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
[7]肖荣鸽,刘博,王勤学,等.基于GRA-ABC-BPNN模型的城市燃气日负荷预测[J].油气储运,2022,41(08):987.[doi:10.6047/j.issn.1000-8241.2022.08.015]
XIAO Rongge,LIU Bo,WANG Qinxue,et al.Daily load forecasting of urban gas based on GRA-ABC-BPNN model[J].Oil & Gas Storage and Transportation,2022,41(8):987.[doi:10.6047/j.issn.1000-8241.2022.08.015]
[8]孙天礼,韩雪,黄仕林,等.元坝高酸性气田地面管道内腐蚀预测[J].油气储运,2023,42(01):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
SUN Tianli,HAN Xue,HUANG Shilin,et al.Internal corrosion prediction of ground pipeline of Yuanba high-sour gasfield[J].Oil & Gas Storage and Transportation,2023,42(8):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
[9]温泉,石小平,张利分,等.基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J].油气储运,2023,42(06):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
WEN Quan,SHI Xiaoping,ZHANG Lifen,et al.APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting[J].Oil & Gas Storage and Transportation,2023,42(8):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
[10]刘真 潘文菊 刘佳 温凯 宫敬.基于聚类改进的区域天然气长期需求组合预测[J].油气储运,2023,42(11):1.
LIU Zhen,PAN Wenju,LIU Jia,et al.Improved combination forecasting model for regional natural gas long-term consumption based on clustering algorithm[J].Oil & Gas Storage and Transportation,2023,42(8):1.
收稿日期:2013-8-19;改回日期:2014-5-30。
作者简介:高山卜,助理工程师,1986年生,2012年硕士毕业于西南石油大学油气储运专业,现主要从事油气管道信息与规划研究工作。Tel:0316-2176940,Email:365311351@qq.com