网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
[1] KIM S, KIM M H. Dynamic behaviors of conventional SCR and lazy-wave SCR for FPSOs in deepwater[J]. Ocean Engineering, 2015, 106: 396-414.
[2] 喻培丰,朱霄霄,张仕民.钢悬链线立管截断模型设计[J].油气储运,2018,37(12):1418-1424. YU P F, ZHU X X, ZHANG S M. Design of truncated model for steel catenary riser[J]. Oil & Gas Storage and Transportation, 2018, 37(12): 1418-1424.
[3] LI S C, NGUYEN C. Dynamic response of deepwater lazy-wave catenary riser[C]. Amsterdam: Deep Offshore Technology International, 2010: 1-20.
[4] QU?AU L M, KIMIAEI M, RANDOLPH M F. Lazy wave catenary risers: scaling factors and analytical approximation of the static stress range in the touchdown zone[C]. Nantes: ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, 2013: V04AT04A028.
[5] WANG Y, DUAN M L, GU J J. Analytical model for transfer process of deepwater steel lazy-wave riser on elastic seabed[J]. Journal of Marine Science and Technology, 2019, 24(1): 123-133.
[6] TRAPPER P A. Feasible numerical analysis of steel lazy-wave riser[J]. Ocean Engineering, 2020, 195: 106643.
[7] CHENG Y, TANG L Y, FAN T H. Dynamic analysis of deepwater steel lazy wave riser with internal flow and seabed interaction using a nonlinear finite element method[J]. Ocean Engineering, 2020, 209: 107498.
[8] RUAN W D, LIU S H, LI Y Y, BAI Y, YUAN S. Nonlinear dynamic analysis of deepwater steel lazy wave riser subjected to imposed top-end excitations[C]. Busan: ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, 2016: V005T04A046.
[9] WANG J L, DUAN M L, HE R Y. A nonlinear dynamic model for 2D deepwater steel lazy-wave riser subjected to top–end imposed excitations[J]. Ships and Offshore Structures, 2018, 13(3): 330-342.
[10] WANG J L, DUAN M L. A nonlinear model for deepwater steel lazy-wave riser configuration with ocean current and internal flow[J]. Ocean Engineering, 2015, 94: 155-162.
[11] WANG J L, DUAN M L, LUO J M. Mathematical model of steel lazy-wave riser abandonment and recovery in deepwater[J]. Marine Structures, 2015, 41: 127-153.
[12] WANG J L, DUAN M L, WANG Y, LI X Z, LUO J M. A nonlinear mechanical model for deepwater steel lazy-wave riser transfer process during installation[J]. Applied Ocean Research, 2015, 50: 217-226.
[13] WANG J L, DUAN M L, HE T, JING C. Numerical solutions for nonlinear large deformation behaviour of deepwater steel lazy-wave riser[J]. Ships and Offshore Structures, 2014, 9(6): 655-668.
[14] 王金龙,段梦兰,田凯.海流作用下的深水懒波型立管形态研究[J].应用数学和力学,2014,35(9):959-968. WANG J L, DUAN M L, TIAN K. Research on the configuration of the deepwater steel lazy-wave riser under effects of ocean currents[J]. Applied Mathematics and Mechanics, 2014, 35(9): 959-968.
[15] AI S M, XU Y, KANG Z, YAN F S. Performance comparison of stress-objective and fatigue-objective optimisation for steel lazy wave risers[J]. Ships and Offshore Structures, 2019, 14(6):534-544.
[16] OH J, JUNG D, KIM H, MIN C, CHO S. A study on the simulation-based installation shape design method of steel lazy wave riser (SLWR) in ultra deepwater depth[J]. Ocean Engineering, 2020, 197: 106902.
[17] CHATJIGEORGIOU I K. On the effect of internal flow on vibrating catenary risers in three dimensions[J]. Engineering Structures, 2010, 32(10): 3313-3329.
[18] ATHISAKUL C, MONPRAPUSSORN T, CHUCHEEPSAKUL S. A variational formulation for three-dimensional analysis of extensible marine riser transporting fluid[J]. Ocean Engineering, 2011, 38(4): 609-620.
[19] ATHISAKUL C, PHANYASAHACHART T, KLAYCHAM K, CHUCHEEPSAKUL S. Static equilibrium configurations and appropriate applied top tension of extensible marine riser with specified total arc-length using finite element method[J]. Engineering Structures, 2012, 34: 271-277.
[20] SHIRI H. Influence of seabed trench formation on fatigue performance of steel catenary risers in touchdown zone[J]. Marine Structures, 2014, 36: 1-20.
[21] CHUCHEEPSAKUL S, MONPRAPUSSORN T, HUANG T. Large strain formulations of extensible flexible marine pipes transporting fluid[J]. Journal of Fluids and Structures, 2003, 17(2): 185-224.
[22] 李清泉,杨和振.深海缓坡型脐带缆干涉分析研究[J].振动与冲击,2012,31(15):180-184,189. LI Q Q, YANG H Z. Interference analysis for deepwater lazy-wave umbilical[J]. Journal of Vibration and Shock, 2012, 31(15): 180-184, 189.
[23] 宋磊建,付世晓,陈希恰,郭宏,屈衍.深海脐带缆总体响应特性比较研究[J].振动与冲击,2014,33(1):119-124. SONG L J, FU S X, CHEN X Q, GUO H, QU Y. Comparative study on deepwater umbilical overall response characteristics[J]. Journal of Vibration and Shock, 2014, 33(1): 119-124.
[24] FELISITA A, GUDMESTAD O T, KARUNAKARAN D, MARTINSEN L O. A review of VIV responses of steel lazy wave riser[C]. Busan: ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, 2016:V002T08A031.
[25] CONSTANTINIDES Y, STOVER M, STEELE A, SANTALA M. CFD modeling and validation of steel lazy-wave riser VIV[C]. Busan: ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, 2016:V002T08A045.
[26] CHENG J Y, CAO P M, FU S X, CONSTANTINIDES Y. Experimental and numerical study of steel lazy wave riser response in extreme environment[C]. Busan: ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, 2016: V005T04A055.
[27] JANG H, KIN J W. Numerical Investigation for vortex-induced vibrations of steel-lazy-wave-risers: part I—CFD validation against forced oscillation model test[C]. Glasgow: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, 2019: V001T01A006.
[28] JANG H, KIN J W. Numerical investigation for vortex-induced vibrations of steel-lazy-wave-risers: part II—CFD study on long flexible riser[C]. Glasgow: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, 2019:V002T08A031.
[29] ZHANG M M, FU S X, SONG L J, WU J, LIE H, HU H W. Hydrodynamics of flexible pipe with staggered buoyancy elements undergoing vortex-induced vibrations[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(6): 061805.
[30] FELISITA A, GUDMESTAD O T, KARUNAKARAN D, MARTINSEN L O. Review of steel lazy wave riser concepts for the North Sea[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(1): 011702.
[31] LIU Z, GUO H Y. Dynamic response study of steel catenary riser based on slender rod model[J]. China Ocean Engineering, 2019, 33(1): 57-64.
[32] CABRERA-MIRANDA J M, PAIK J K. Two-phase flow induced vibrations in a marine riser conveying a fluid with rectangular pulse train mass[J]. Ocean Engineering, 2019, 174:71-83.
[33] PARK B W, OH S H, KWON Y J, JUNG J H, JUNG D H. Dynamic analysis of SLWR subjected to internal slug flow conditions[C]. Honolulu: Proceedings of the Twenty-Ninth (2019) International Ocean and Polar Engineering Conference, 2019: 1861-1867.
[34] JEONG H, JANG B S, KIM J D, PARK G, CHOI J, LEE D. A study on effects of slug flow on dynamic response and fatigue damage of risers[J]. Ocean Engineering, 2020, 217: 107965.
[35] BORDALO S N, MOROOKA C K. A study of riser oscillations caused by slug flows during subsea petroleum production[M]//OKADA T, SUZUKI K, KAWAMURA Y. Practical Design of Ships and Other Floating Structures. Singapore: Springer, 2021:595-613.
[36] YIN D C, LIE H, WU J. Structural and hydrodynamic aspects of steel lazy wave riser in deepwater[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(2): 020801.
[37] DONG X Y, SHIRI H. The influence of nonlinear hysteretic seabed interaction on slug-induced stress oscillations in steel catenary risers[J]. Applied Ocean Research, 2019, 82: 175-190.
[38] BORDALO S N, MOROOKA C K. Slug flow induced oscillations on subsea petroleum pipelines[J]. Journal of Petroleum Science and Engineering, 2018, 165: 535-549.
[39] 唐有波.海洋立管内部气液段塞流动特性及其流致振动研究[D].成都:西南石油大学,2017. TANG Y B. Study on gas-liquid slug flow characteristics and flow-induced vibration of marine riser[D]. Chengdu: Southwest Petroleum University, 2017.
[1]喻培丰,朱霄霄,张仕民.钢悬链线立管截断模型设计[J].油气储运,2018,37(12):1418.[doi:10.6047/j.issn.1000-8241.2018.12.016]
YU Peifeng,ZHU Xiaoxiao,ZHANG Shimin.Design of truncated model for steel catenary riser[J].Oil & Gas Storage and Transportation,2018,37(07):1418.[doi:10.6047/j.issn.1000-8241.2018.12.016]
王金龙,男,1988年生,工程师,2015年博士毕业于复旦大学流体力学专业,现主要从事深水隔水管、立管等方面的研究工作。地址:北京市朝阳区太阳宫南街6号院,100028。电话:010-84522745。Email:wangjinlong132@126.com
基金项目:中海油科技项目“深水轻型、中型修井系统设计与关键技术研究”,YXKY-ZX042020。
(收稿日期:2021-07-01;修回日期:2022-03-24;编辑:张雪琴)