网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
管道高后果区识别工作主要依据GB32167—2015《油气输送管道完整性管理规范》开展,但由于缺乏有效技术手段的支撑,标准中的定量识别判据对实际识别工作的指导作用受限,从而导致识别工作的效率以及识别结果的准确率不高。为此,提出基于高分辨率遥感影像的高后果区识别方法,采用卷积神经网络和条件随机场组合模型,通过管道中心线两侧缓冲区的建立和基于线性参考的管段划分,实现管道沿线建筑物的自动检测与提取,最后,应用几何计算完成全线高后果区识别。利用该方法对某管道高后果区进行了识别,识别的准确率与召回率分别为93%、90%,大幅提高了高后果区识别的效率与准确性。研究成果可为管道高后果区的高效、定量识别提供技术指导,具有良好的应用前景。(图4,表1,参27)
Presently, the High Consequence Areas (HCAs) are mainly identified according to Oil and gas pipeline integrity management specification (GB 32167-2015). However, due to the lack of effective technical means, the quantitative identification criterion in the standard has a limited guidance effect on the actual identification work, thus leading to the inefficiency of identification and the low accuracy of identification results. In this regard, the HCA identification method based on high-resolution remote sensing images was proposed. Meanwhile, the buildings along the pipeline were detected and extracted automatically based on the convolutional neural network and the conditional random field, in combination with the identification of buffer area and the Linear Referencing based pipeline segmentation. Thus, the identification of HCAs along the pipeline was completed through the geometric calculation. Moreover, the HCAs of a pipeline were identified with this method, of which the accuracy rate and recall rate were 93% and 90%, respectively, showing a great improvement in the efficiency and accuracy of HCA identification. Hence, the research results could provide technical guidance to the efficient and quantitative identification of HCAs along the pipeline, and the method has a good application prospect. (4 Figures, 1 Table, 27 References)
[1] 杨宏伟,张松,管磊,信硕.基于GIS的油气管道高后果区识别研究[J].天然气与石油,2019,37(5):119-124. YANG H W, ZHANG S, GUAN L, XIN S. Research on oil and gas pipeline high consequence areas identification based on GIS[J]. Natural Gas and Oil, 2019, 37(5): 119-124.
[2] ZHOU Y W, XU Q, ZHOU Y Z. Research and application of natural gas pipeline assessment method in Location Class upgrading areas[J]. Journal of Pipeline Science and Engineering, 2021, 1(3): 360-366.
[3] KHAN F, YARVEISY R, ABBASSI R. Risk-based pipeline integrity management: a road map for the resilient pipelines[J]. Journal of Pipeline Science and Engineering, 2021, 1(1): 74-87.
[4] 孙青峰,杨玉锋,赵春磊,薛庆,张华兵,魏然然.城镇燃气管网完整性管理体系研究与实践[J].天然气工业,2020,40(3):123-129. SUN Q F, YANG Y F, ZHAO C L, XUE Q, ZHANG H B, WEI R R. Integrity management system of gas distribution pipeline:research and practices[J]. Natural Gas Industry, 2020, 40(3):123-129.
[5] 张圣柱,冯晓东,王旭,冯庆善,韩玉鑫. 中国油气管道高后果区现状与全过程管理体系[J]. 油气储运,2021,40(5):521-526,544. ZHANG S Z, FENG X D, WANG X, FENG Q S, HAN Y X. Status and whole process management system of high consequence areas of oil and gas pipelines in China[J]. Oil & Gas Storage and Transportation, 2021, 40(5): 521-526, 544.
[6] 王俊强,何仁洋,刘哲,郭晗.中美油气管道完整性管理规范发展现状及差异[J].油气储运,2018,37(1):6-14. WANG J Q, HE R Y, LIU Z, GUO H. Development status of oil & gas pipeline integrity management specification in China and the USA and their differences[J]. Oil & Gas Storage and Transportation, 2018, 37(1): 6-14.
[7] 王晓霖,帅健,宋红波,王勇.输油管道高后果区识别与分级管理[J].中国安全科学学报,2015,25(6):149-154. WANG X L, SHUAI J, SONG H B, WANG Y. Identification and hierarchical management of high consequence areas for oil pipeline[J]. China Safety Science Journal, 2015, 25(6): 149-154.
[8] 帅义,帅健,苏丹丹,鲍庆军,孙浩.基于DEA的输油管道高后果区管理效能评价[J].油气储运,2017,36(3):255-261. SHUAI Y, SHUAI J, SU D D, BAO Q J, SUN H. Effectiveness evaluation on high consequence area management of oil pipeline based on DEA[J]. Oil & Gas Storage and Transportation, 2017, 36(3): 255-261.
[9] 郭文朋,周亚薇.基于改进风险矩阵法的中俄东线高后果区风险评估[J].油气储运,2019,38(3):273-278,284. GUO W P, ZHOU Y W. Risk assessment of high consequence areas in China-Russia Eastern Gas Pipeline Project based on the modified risk matrix method[J]. Oil & Gas Storage and Transportation, 2019, 38(3): 273-278, 284.
[10] 刘翼,张安祺,陈璐瑶,丁疆强,陈欣,李斯.基于多源遥感影像的高后果区变化检测方法[J].油气储运,2021,40(3):293-299. LIU Y, ZHANG A Q, CHEN L Y, DING J Q, CHEN X, LI S. Detection method for change of high-consequence areas based on multi-source remote sensing image[J]. Oil & Gas Storage and Transportation, 2021, 40(3): 293-299.
[11] 高海康,戴连双,贾韶辉,刘天尧,徐杰,刘亮,等.基于GIS的管道高后果区管理升级及其实践[J].石油工业技术监督, 2020,36(5):60-63. GAO H K, DAI L S, JIA S H, LIU T Y, XU J, LIU L, et al. Management upgrade of high consequence areas of pipeline based on GIS and its practice[J]. Technology Supervision in Petroleum Industry, 2020, 36(5): 60-63.
[12] STEPHENS M J, LEEWIS K, MOORE D K. A model for sizing high consequence areas associated with natural gas pipelines[C]. Calgary: 2002 4th International Pipeline Conference, 2002: 759-767.
[13] DÍAZ-PARRA O, VERA-LÓPEZ E. Simulation of high consequence areas for gas pipelines[J]. Revista Científica, 2018(31): 32-44.
[14] 齐广慧.基于RS和GIS的油气管道选线方法研究[D].青岛:中国石油大学(华东),2011. QI G H. Research on oil and gas pipeline route selection method based on RS and GIS[D]. Qingdao: China University of Petroleum (East China), 2011.
[15] 董绍华.中国油气管道完整性管理20年回顾与发展建议[J].油气储运,2020,39(3):241-261. DONG S H. Review of China’s oil and gas pipeline integrity management in the past 20 years and development suggestions[J]. Oil & Gas Storage and Transportation, 2020, 39(3): 241-261.
[16] 周月敏,周翔.中国高分辨率对地观测系统共性应用技术规范体系框架研究[J].地球信息科学学报,2018,20(9):1298-1305. ZHOU Y M, ZHOU X. The system framework of technical standards for common applications in China high-resolution earth observation system[J]. Journal of Geo-Information Science, 2018, 20(9): 1298-1305.
[17] 曹兰杰,吴兵,汪金花,张博.面向对象的高分一号铁尾矿遥感信息提取与分析[J].测绘与空间地理信息,2019,42(4):98-101. CAO L J, WU B, WANG J H, ZHANG B. Object-oriented information extraction and analysis of the iron tailings with GF-1 remote sensing image[J]. Geomatics & Spatial Information Technology, 2019, 42(4): 98-101.
[18] 包颖,申佩佩,陈海珍,严立.高分二号卫星影像批量预处理应用研究[J].地理空间信息,2019,17(5):1-4. BAO Y, SHEN P P, CHEN H Z, YAN L. Application of the batch preprocessing for GF-2 satellite images[J]. Geospatial Information, 2019, 17(5): 1-4.
[19] 马冯,孙旭,高连如,付晨罡. “高分四号”卫星正射校正精度分析[J].航天返回与遥感,2019,40(1):74-82. MA F, SUN X, GAO L R, FU C G. Research on orthorectification accuracy of GF-4 satellite image[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(1): 74-82.
[20] 余博,李如仁,陈振炜,张过. “高分三号”卫星图像干涉测量试验[J].航天返回与遥感,2019,40(1):66-73. YU B, LI R R, CHEN Z W, ZHANG G. Image interferometry experiment of GF-3 satellite[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(1): 66-73.
[21] 熊伟. “高分五号”卫星大气主要温室气体监测仪(特邀)[J].红外与激光工程,2019,48(3):24-30. XIONG W. Greenhouse gases Monitoring Instrument(GMI) on GF-5 satellite (invited)[J]. Infrared and Laser Engineering, 2019, 48(3): 24-30.
[22] 吕道双,林娜,张小青.面向对象的多尺度多特征高分遥感影像建筑物提取[J].北京测绘,2019,33(2):191-195. LYU D S, LIN N, ZHANG X Q. Object-oriented multi-scale multi-feature high-resolution remote sensing image building extraction[J]. Beijing Surveying and Mapping, 2019, 33(2):191-195.
[23] 季顺平,魏世清.遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J].测绘学报,2019,48(4):448-459. JI S P, WEI S Q. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 448-459.
[24] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
[25] HE K M, ZHANG X Y, REN S Q, SUN J. Deep residual learning for image recognition[C]. Las Vegas: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
[26] 凌德泉,毕硕本,左颖,李婧晗,江岭.缓冲区分析综合模型构建研究[J].测绘科学,2019,44(9):47-53.LING D Q, BI S B, ZUO Y, LI J H, JIANG L. Study on the comprehensive model construction of buffer analysis[J]. Science of Surveying and Mapping, 2019, 44(9): 47-53.
[27] 黄杏元,马劲松,汤勤.地理信息系统概论[M]. 2版.北京:高等教育出版社,2001:165-171. HUANG X Y, MA J S, TANG Q. Introduction to geographic information systems[M]. 2nd ed. Beijing: Higher Education Press, 2001: 165-171.
[1]孙亮.长输管道超大型防风棚技术及应用[J].油气储运,2016,35(预出版):1.
SUN Liang.Ultra-large wind shelter technology for long-distance pipeline and its application[J].Oil & Gas Storage and Transportation,2016,35(04):1.
[2]黄锋.长输管道全自动焊技术应用工程经济分析[J].油气储运,2015,34(12):1365.[doi:10.6047/j.issn.1000-8241.2015.12.024]
HUANG Feng.Engineering economic analysis for application of automatic welding in long-distance pipeline[J].Oil & Gas Storage and Transportation,2015,34(04):1365.[doi:10.6047/j.issn.1000-8241.2015.12.024]
[3]赵晓利 张琳 李睿 李博 张新宇 靳元章 宋乔 张波.管道环焊缝检测识别方法[J].油气储运,2016,35(预出版):1.
ZHAO Xiaoli,ZHANG Lin,LI Rui,et al.Detection and identification of pipeline girth weld[J].Oil & Gas Storage and Transportation,2016,35(04):1.
[4]张轩,陈子鑫,刘国豪,等.压缩机进气滤芯反吹除霜方法的优化[J].油气储运,2015,34(9):1019.[doi:10.6047/j.issn.1000-8241.2015.09.021]
ZHANG Xuan,CHEN Zixin,LIU Guohao,et al.Optimization of back flushing technique for defrosting of gas intake filters in compressors[J].Oil & Gas Storage and Transportation,2015,34(04):1019.[doi:10.6047/j.issn.1000-8241.2015.09.021]
[5]许雷阁 林缅.基于向量式有限元方法的长输海底管道不平整度分析[J].油气储运,2016,35(预出版):1.
XU Leige,LIN Mian.Bottom roughness analysis of long-distance subsea pipeline using the VFIFE method[J].Oil & Gas Storage and Transportation,2016,35(04):1.
[6]张世斌,王学力,沙胜义,等.漠河-大庆输油管道冻胀和融沉监测技术[J].油气储运,2014,33(5):488.[doi:10.6047/j.issn.1000-8241.2014.05.007]
ZHANG Shibin,WANG Xueli,SHA Shengyi,et al.Monitoring of frost heaving and thaw settlement of Mohe-Daqing Crude Oil Pipeline[J].Oil & Gas Storage and Transportation,2014,33(04):488.[doi:10.6047/j.issn.1000-8241.2014.05.007]
[7]贾韶辉,周利剑,郭磊,等.基于完整性数据库的管道应急信息化技术[J].油气储运,2014,33(6):582.[doi:10.6047/j.issn.1000-8241.2014.06.003]
JIA Shaohui,ZHOU Lijian,GUO Lei,et al.Information technology for emergency response based on pipeline integrity database[J].Oil & Gas Storage and Transportation,2014,33(04):582.[doi:10.6047/j.issn.1000-8241.2014.06.003]
[8]马廷霞,周俊鹏,李安军.长输管道高后果区识别系统软件的设计[J].油气储运,2014,33(7):719.[doi:10.6047/j.issn.1000-8241.2014.07.007]
MA Tingxia,ZHOU Junpeng,LI Anjun.Design of high consequence area identification system software of long-distance pipeline[J].Oil & Gas Storage and Transportation,2014,33(04):719.[doi:10.6047/j.issn.1000-8241.2014.07.007]
[9]张振永,张文伟,张金源,等.基于可靠性设计方法的长输管道选材方案[J].油气储运,2014,33(11):1202.[doi:10.6047/j.issn.1000-8241.2014.11.011]
ZHANG Zhenyong,ZHANG Wenwei,ZHANG Jinyuan,et al.Material scheme of long-distance pipeline based on the reliability design method[J].Oil & Gas Storage and Transportation,2014,33(04):1202.[doi:10.6047/j.issn.1000-8241.2014.11.011]
[10]陆道明,黄金钊.管道外检测图表模块设计[J].油气储运,2014,33(11):1208.[doi:10.6047/j.issn.1000-8241.2014.11.012]
LU Daoming,HUANG Jinzhao.Chart module design of pipeline external detection[J].Oil & Gas Storage and Transportation,2014,33(04):1208.[doi:10.6047/j.issn.1000-8241.2014.11.012]
刘翼,男,1982年生,高级工程师,2005年毕业于长江大学地理信息系统专业,现主要从事管道完整性技术方面的研究工作。地址:湖北省武汉市洪山区雄楚大街977号,430074。电话:13986194520。Email:83259175@qq.com
(收稿日期:2019-07-15;修回日期:2022-01-20;编辑:张静楠)