[1]刘翼,韩昌柴,苏望发,等.基于高分辨率遥感影像的管道高后果区识别方法[J].油气储运,2022,41(04):418-423+437.[doi:10.6047/j.issn.1000-8241.2022.04.008]
 LIU Yi,HAN Changchai,SU Wangfa,et al.High Consequence Area identification method based on high-resolution remote sensing images[J].Oil & Gas Storage and Transportation,2022,41(04):418-423+437.[doi:10.6047/j.issn.1000-8241.2022.04.008]
点击复制

基于高分辨率遥感影像的管道高后果区识别方法

参考文献/References:

[1] 杨宏伟,张松,管磊,信硕.基于GIS的油气管道高后果区识别研究[J].天然气与石油,2019,37(5):119-124. YANG H W, ZHANG S, GUAN L, XIN S. Research on oil and gas pipeline high consequence areas identification based on GIS[J]. Natural Gas and Oil, 2019, 37(5): 119-124.
[2] ZHOU Y W, XU Q, ZHOU Y Z. Research and application of natural gas pipeline assessment method in Location Class upgrading areas[J]. Journal of Pipeline Science and Engineering, 2021, 1(3): 360-366.
[3] KHAN F, YARVEISY R, ABBASSI R. Risk-based pipeline integrity management: a road map for the resilient pipelines[J]. Journal of Pipeline Science and Engineering, 2021, 1(1): 74-87.
[4] 孙青峰,杨玉锋,赵春磊,薛庆,张华兵,魏然然.城镇燃气管网完整性管理体系研究与实践[J].天然气工业,2020,40(3):123-129. SUN Q F, YANG Y F, ZHAO C L, XUE Q, ZHANG H B, WEI R R. Integrity management system of gas distribution pipeline:research and practices[J]. Natural Gas Industry, 2020, 40(3):123-129.
[5] 张圣柱,冯晓东,王旭,冯庆善,韩玉鑫. 中国油气管道高后果区现状与全过程管理体系[J]. 油气储运,2021,40(5):521-526,544. ZHANG S Z, FENG X D, WANG X, FENG Q S, HAN Y X. Status and whole process management system of high consequence areas of oil and gas pipelines in China[J]. Oil & Gas Storage and Transportation, 2021, 40(5): 521-526, 544.
[6] 王俊强,何仁洋,刘哲,郭晗.中美油气管道完整性管理规范发展现状及差异[J].油气储运,2018,37(1):6-14. WANG J Q, HE R Y, LIU Z, GUO H. Development status of oil & gas pipeline integrity management specification in China and the USA and their differences[J]. Oil & Gas Storage and Transportation, 2018, 37(1): 6-14.
[7] 王晓霖,帅健,宋红波,王勇.输油管道高后果区识别与分级管理[J].中国安全科学学报,2015,25(6):149-154. WANG X L, SHUAI J, SONG H B, WANG Y. Identification and hierarchical management of high consequence areas for oil pipeline[J]. China Safety Science Journal, 2015, 25(6): 149-154.
[8] 帅义,帅健,苏丹丹,鲍庆军,孙浩.基于DEA的输油管道高后果区管理效能评价[J].油气储运,2017,36(3):255-261. SHUAI Y, SHUAI J, SU D D, BAO Q J, SUN H. Effectiveness evaluation on high consequence area management of oil pipeline based on DEA[J]. Oil & Gas Storage and Transportation, 2017, 36(3): 255-261.
[9] 郭文朋,周亚薇.基于改进风险矩阵法的中俄东线高后果区风险评估[J].油气储运,2019,38(3):273-278,284. GUO W P, ZHOU Y W. Risk assessment of high consequence areas in China-Russia Eastern Gas Pipeline Project based on the modified risk matrix method[J]. Oil & Gas Storage and Transportation, 2019, 38(3): 273-278, 284.
[10] 刘翼,张安祺,陈璐瑶,丁疆强,陈欣,李斯.基于多源遥感影像的高后果区变化检测方法[J].油气储运,2021,40(3):293-299. LIU Y, ZHANG A Q, CHEN L Y, DING J Q, CHEN X, LI S. Detection method for change of high-consequence areas based on multi-source remote sensing image[J]. Oil & Gas Storage and Transportation, 2021, 40(3): 293-299.
[11] 高海康,戴连双,贾韶辉,刘天尧,徐杰,刘亮,等.基于GIS的管道高后果区管理升级及其实践[J].石油工业技术监督, 2020,36(5):60-63. GAO H K, DAI L S, JIA S H, LIU T Y, XU J, LIU L, et al. Management upgrade of high consequence areas of pipeline based on GIS and its practice[J]. Technology Supervision in Petroleum Industry, 2020, 36(5): 60-63.
[12] STEPHENS M J, LEEWIS K, MOORE D K. A model for sizing high consequence areas associated with natural gas pipelines[C]. Calgary: 2002 4th International Pipeline Conference, 2002: 759-767.
[13] DÍAZ-PARRA O, VERA-LÓPEZ E. Simulation of high consequence areas for gas pipelines[J]. Revista Científica, 2018(31): 32-44.
[14] 齐广慧.基于RS和GIS的油气管道选线方法研究[D].青岛:中国石油大学(华东),2011. QI G H. Research on oil and gas pipeline route selection method based on RS and GIS[D]. Qingdao: China University of Petroleum (East China), 2011.
[15] 董绍华.中国油气管道完整性管理20年回顾与发展建议[J].油气储运,2020,39(3):241-261. DONG S H. Review of China’s oil and gas pipeline integrity management in the past 20 years and development suggestions[J]. Oil & Gas Storage and Transportation, 2020, 39(3): 241-261.
[16] 周月敏,周翔.中国高分辨率对地观测系统共性应用技术规范体系框架研究[J].地球信息科学学报,2018,20(9):1298-1305. ZHOU Y M, ZHOU X. The system framework of technical standards for common applications in China high-resolution earth observation system[J]. Journal of Geo-Information Science, 2018, 20(9): 1298-1305.
[17] 曹兰杰,吴兵,汪金花,张博.面向对象的高分一号铁尾矿遥感信息提取与分析[J].测绘与空间地理信息,2019,42(4):98-101. CAO L J, WU B, WANG J H, ZHANG B. Object-oriented information extraction and analysis of the iron tailings with GF-1 remote sensing image[J]. Geomatics & Spatial Information Technology, 2019, 42(4): 98-101.
[18] 包颖,申佩佩,陈海珍,严立.高分二号卫星影像批量预处理应用研究[J].地理空间信息,2019,17(5):1-4. BAO Y, SHEN P P, CHEN H Z, YAN L. Application of the batch preprocessing for GF-2 satellite images[J]. Geospatial Information, 2019, 17(5): 1-4.
[19] 马冯,孙旭,高连如,付晨罡. “高分四号”卫星正射校正精度分析[J].航天返回与遥感,2019,40(1):74-82. MA F, SUN X, GAO L R, FU C G. Research on orthorectification accuracy of GF-4 satellite image[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(1): 74-82.
[20] 余博,李如仁,陈振炜,张过. “高分三号”卫星图像干涉测量试验[J].航天返回与遥感,2019,40(1):66-73. YU B, LI R R, CHEN Z W, ZHANG G. Image interferometry experiment of GF-3 satellite[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(1): 66-73.
[21] 熊伟. “高分五号”卫星大气主要温室气体监测仪(特邀)[J].红外与激光工程,2019,48(3):24-30. XIONG W. Greenhouse gases Monitoring Instrument(GMI) on GF-5 satellite (invited)[J]. Infrared and Laser Engineering, 2019, 48(3): 24-30.
[22] 吕道双,林娜,张小青.面向对象的多尺度多特征高分遥感影像建筑物提取[J].北京测绘,2019,33(2):191-195. LYU D S, LIN N, ZHANG X Q. Object-oriented multi-scale multi-feature high-resolution remote sensing image building extraction[J]. Beijing Surveying and Mapping, 2019, 33(2):191-195.
[23] 季顺平,魏世清.遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J].测绘学报,2019,48(4):448-459. JI S P, WEI S Q. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 448-459.
[24] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
[25] HE K M, ZHANG X Y, REN S Q, SUN J. Deep residual learning for image recognition[C]. Las Vegas: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
[26] 凌德泉,毕硕本,左颖,李婧晗,江岭.缓冲区分析综合模型构建研究[J].测绘科学,2019,44(9):47-53.LING D Q, BI S B, ZUO Y, LI J H, JIANG L. Study on the comprehensive model construction of buffer analysis[J]. Science of Surveying and Mapping, 2019, 44(9): 47-53.
[27] 黄杏元,马劲松,汤勤.地理信息系统概论[M]. 2版.北京:高等教育出版社,2001:165-171. HUANG X Y, MA J S, TANG Q. Introduction to geographic information systems[M]. 2nd ed. Beijing: Higher Education Press, 2001: 165-171.

相似文献/References:

[1]孙亮.长输管道超大型防风棚技术及应用[J].油气储运,2016,35(预出版):1.
 SUN Liang.Ultra-large wind shelter technology for long-distance pipeline and its application[J].Oil & Gas Storage and Transportation,2016,35(04):1.
[2]黄锋.长输管道全自动焊技术应用工程经济分析[J].油气储运,2015,34(12):1365.[doi:10.6047/j.issn.1000-8241.2015.12.024]
 HUANG Feng.Engineering economic analysis for application of automatic welding in long-distance pipeline[J].Oil & Gas Storage and Transportation,2015,34(04):1365.[doi:10.6047/j.issn.1000-8241.2015.12.024]
[3]赵晓利 张琳 李睿 李博 张新宇 靳元章 宋乔 张波.管道环焊缝检测识别方法[J].油气储运,2016,35(预出版):1.
 ZHAO Xiaoli,ZHANG Lin,LI Rui,et al.Detection and identification of pipeline girth weld[J].Oil & Gas Storage and Transportation,2016,35(04):1.
[4]张轩,陈子鑫,刘国豪,等.压缩机进气滤芯反吹除霜方法的优化[J].油气储运,2015,34(9):1019.[doi:10.6047/j.issn.1000-8241.2015.09.021]
 ZHANG Xuan,CHEN Zixin,LIU Guohao,et al.Optimization of back flushing technique for defrosting of gas intake filters in compressors[J].Oil & Gas Storage and Transportation,2015,34(04):1019.[doi:10.6047/j.issn.1000-8241.2015.09.021]
[5]许雷阁 林缅.基于向量式有限元方法的长输海底管道不平整度分析[J].油气储运,2016,35(预出版):1.
 XU Leige,LIN Mian.Bottom roughness analysis of long-distance subsea pipeline using the VFIFE method[J].Oil & Gas Storage and Transportation,2016,35(04):1.
[6]张世斌,王学力,沙胜义,等.漠河-大庆输油管道冻胀和融沉监测技术[J].油气储运,2014,33(5):488.[doi:10.6047/j.issn.1000-8241.2014.05.007]
 ZHANG Shibin,WANG Xueli,SHA Shengyi,et al.Monitoring of frost heaving and thaw settlement of Mohe-Daqing Crude Oil Pipeline[J].Oil & Gas Storage and Transportation,2014,33(04):488.[doi:10.6047/j.issn.1000-8241.2014.05.007]
[7]贾韶辉,周利剑,郭磊,等.基于完整性数据库的管道应急信息化技术[J].油气储运,2014,33(6):582.[doi:10.6047/j.issn.1000-8241.2014.06.003]
 JIA Shaohui,ZHOU Lijian,GUO Lei,et al.Information technology for emergency response based on pipeline integrity database[J].Oil & Gas Storage and Transportation,2014,33(04):582.[doi:10.6047/j.issn.1000-8241.2014.06.003]
[8]马廷霞,周俊鹏,李安军.长输管道高后果区识别系统软件的设计[J].油气储运,2014,33(7):719.[doi:10.6047/j.issn.1000-8241.2014.07.007]
 MA Tingxia,ZHOU Junpeng,LI Anjun.Design of high consequence area identification system software of long-distance pipeline[J].Oil & Gas Storage and Transportation,2014,33(04):719.[doi:10.6047/j.issn.1000-8241.2014.07.007]
[9]张振永,张文伟,张金源,等.基于可靠性设计方法的长输管道选材方案[J].油气储运,2014,33(11):1202.[doi:10.6047/j.issn.1000-8241.2014.11.011]
 ZHANG Zhenyong,ZHANG Wenwei,ZHANG Jinyuan,et al.Material scheme of long-distance pipeline based on the reliability design method[J].Oil & Gas Storage and Transportation,2014,33(04):1202.[doi:10.6047/j.issn.1000-8241.2014.11.011]
[10]陆道明,黄金钊.管道外检测图表模块设计[J].油气储运,2014,33(11):1208.[doi:10.6047/j.issn.1000-8241.2014.11.012]
 LU Daoming,HUANG Jinzhao.Chart module design of pipeline external detection[J].Oil & Gas Storage and Transportation,2014,33(04):1208.[doi:10.6047/j.issn.1000-8241.2014.11.012]

备注/Memo

刘翼,男,1982年生,高级工程师,2005年毕业于长江大学地理信息系统专业,现主要从事管道完整性技术方面的研究工作。地址:湖北省武汉市洪山区雄楚大街977号,430074。电话:13986194520。Email:83259175@qq.com
(收稿日期:2019-07-15;修回日期:2022-01-20;编辑:张静楠)

更新日期/Last Update: 2022-04-25