网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
自动焊技术在中国大口径、高钢级管道现场焊接过程中广泛应用,出现了由多种因素导致的错边、裂纹等焊缝缺陷,对管道焊接接头变形承载能力造成了严重影响。为了明确含根焊裂纹X80管道焊接接头应变能力变化规律,开展管道环焊接头应变能力数值模拟。以外径1219mm的单V形坡口X80管道焊接接头为研究对象,假定接头处存在工程允许的最大3mm错边以及根焊熔合线位置存在无法检测到的最大25mm×2.5mm的表面型裂纹缺陷,考虑环焊接头根焊、热影响区、母材、填充焊4个区域材料本构关系的差异性,采用数值仿真分析方法,定量分析了载荷形式、母材屈强比及热影响区软化率对焊接接头应变能力的影响。结果表明:通过建立的有限元模型,可以计算得到多种工况条件下含根焊裂纹X80管道焊接接头应变的变化规律,并且得到了以0.25mm为临界韧性值、0.5%为应变能力的符合工程应用需求的安全临界强度匹配系数。研究结果可为含根焊裂纹X80管道焊接接头应变能力的安全评估及工程应用提供参考。(图7,表1,参30)
Automatic welding technology is widely used in the field welding of large-diameter and high-grade steel pipelines in China. Welding defects such as misalignment and cracks caused by various factors have seriously affected the deformation and bearing capacity of pipeline welding joints. In order to clarify the change law of the welding joint of X80 pipeline with root welding crack, the strain capacity of the girth welding joint of pipeline is simulated numerically. Here, the welding joint of a single-V grooved pipeline with an outer diameter of 1 219 mm was studied. It was assumed that a maximum 3 mm misalignment allowed in engineering was located at the joint and an undetectable surface crack defect, 25 mm × 2.5 mm at maximum, was at the fusion line of root welding. Meanwhile, the differences between the constitutive relations of materials in the four areas of root weld, heat affected zone, base metal and filler weld, were considered. Base on that, the effects of loading mode, yield-strength ratio of base metal and softening rate of the heat affected zone on the strain capacity of welding joints were analyzed quantitatively through numerical simulation. The results show that the change law of strain in welding joint of X80 pipeline with root welding crack under various service conditions can be calculated through the established finite element model. Moreover, the critical strength matching ratio satisfying the engineering application requirements is given with the critical toughness value of 0.25 mm and the strain capacity requirement of 0.5%. Generally, the research results could provide reference for the safety assessment and engineering application of strain capacity of welding joint of X80 pipeline with root welding crack. (7 Figures, 1 Table, 30 References)
[1] 张宏,刘啸奔.地质灾害作用下油气管道设计应变计算模型[J].油气储运,2017,36(1):91-97. ZHANG H, LIU X B. Design strain calculation model for oil and gas pipelines subject to geological hazards[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 91-97.
[2] 任俊杰,马卫锋,惠文赢,罗金恒,王珂,马秋荣,等.高钢级管道环焊缝断裂行为研究现状及探讨[J].石油工程建设,2019, 45(1):1-5. REN J J, MA W F, HUI W Y, LUO J H, WANG K, MA Q R, et al. Research status and prospect on fracture behaviour of butt girth welds in high grade steel pipelines[J]. Petroleum engineering construction, 2019, 45(1): 1-5.
[3] 隋永莉,吴宏.我国长输油气管道自动焊技术应用现状及展望[J].油气储运,2014,33(9):913-921. SUI Y L, WU H. Current and future applications of automatic welding technology for long-distance oil/gas pipeline in China[J]. Oil & Gas Storage and Transportation, 2014, 33(9): 913-921.
[4] 杨锋平,卓海森,罗金恒,张良,贾海东.油气输送管失效案例与原因分析[J].石油管材与仪器,2015,1(3):63-66. YANG F P, ZHUO H S, LUO J H, ZHANG L, JIA H D. Study of failure cause in some failure cases in oil and gas pipeline[J]. Petroleum Tubular Goods & Instruments, 2015, 1(3): 63-66.
[5] 罗金恒,杨锋平,王珂,张良,赵新伟,霍春勇,等.油气管道失效频率及失效案例分析[C].北京:2015年全国失效分析学术会议,2015:470-474. LUO J H, YANG F P, WANG K, ZHANG L, ZHAO X W, HUO C Y, et al. Study of failure frequency and failure cases in oil & gas pipeline[C]. Beijing: 2015 National Conference on Failure Analysis, 2015: 470-474.
[6] KIM J S, SONG T K, KIM Y J, JIN T E. Strength mis-match effect on limit loads for circumferential surface cracked pipes[J]. Engineering Fracture Mechanics, 2009, 76: 1074-1086.
[7] ZHAO X X, XU L Y, JING H Y, HAN Y D, ZHAO L. A strain-based fracture assessment for offshore clad pipes with ultra undermatched V groove weld joints and circumferential surface cracks under large-scale plastic strain[J]. European Journal of Mechanics-A/Solids, 2019, 74: 403-416.
[8] ZHANG Y M, YI D K, XIAO Z M, HUANG Z H, KUMAR S B. Elastic-plastic fracture analyses for pipeline girth welds with 3D semi-elliptical surface cracks subjected to large plastic bending[J]. International Journal of Pressure Vessels and Piping, 2013, 105/106: 90-102.
[9] ZHAO H S, LIE S T, ZHANG Y. Fracture assessment of mismatched girth welds in oval-shaped clad pipes subjected to bending moment[J]. International Journal of Pressure Vessels and Piping, 2018, 160: 1-13.
[10] ZHAO H S, LIE S T, ZHANG Y. Elastic-plastic fracture analyses for misaligned clad pipeline containing a canoe shape surface crack subjected to large plastic deformation[J]. Ocean Engineering, 2017, 146: 87-100.
[11] 吴宏,周剑琴.国内大口径、高钢级管道焊接及焊缝检测技术现状[J].油气储运,2017,36(1):21-27. WU H, ZHOU J Q. Current status of welding and weld testing technologies for large-diameter high-grade pipelines in China[J]. Oil & Gas Storage and Transportation, 2017, 36(1):21-27.
[12] 帅健,孔令圳.高钢级管道环焊缝应变能力评价[J].油气储运, 2017,36(12):1368-1373. SHUAI J, KONG L Z. Evaluation on strain capacity of girth welds in high-grade pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(12): 1368-1373.
[13] 张奕,徐学利,张勇,李刚,罗金恒.对接焊管环向焊缝中裂纹与错边复合缺陷应力强度因子计算方法研究[J].西安石油大学学报(自然科学版),2011,26(5):89-92. ZHANG Y, XU X L, ZHANG Y, LI G, LUO J H. Calculation and analysis for the stress intensity factor of the complex defect of crack and misalignment in pipeline girth weld[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2011, 26(5):89-92.
[14] 高喆慧,帅健,张思弘.管道焊縫缺陷的定量安全评定与容限尺寸[J].油气储运,2015,34(5):488-492,496. GAO Z H, SHUAI J, ZHANG S H. Quantitative safety assessment and tolerance size of pipeline weld defects[J]. Oil &Gas Storage and Transportation, 2015, 34(5): 488-492, 496.
[15] HERTELÉ S, COSHAM A, ROOVERS P. Structural integrity of corroded girth welds in vintage steel pipelines[J]. Engineering Structures, 2016, 124: 429-441.
[16] WU K, LIU X B, ZHANG H, SUI Y L, ZHANG Z Y, YANG D, LIU Y Q. Fracture response of 1 422-mm diameter pipe with double-V groove weld joints and circumferential crack in fusion line[J]. Engineering Failure Analysis, 2020, 115: 104641.
[17] 张宏,吴锴,刘啸奔,杨悦,隋永莉,张振永.直径1 422 mm X80管道环焊接头应变能力数值模拟方法[J].油气储运, 2020,39(2):162-168. ZHANG H, WU K, LIU X B, YANG Y, SUI Y L, ZHANG Z Y. Numerical simulation for strain capacity of girth welding joint on X80 pipeline with 1 422 mm diameter[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 162-168.
[18] YANG Y, ZHANG H, CHEN P C, SUI Y L, YANG D, LIU X B. Strain capacity analysis of the mismatched welding joint with misalignments of D 1, 422 mm X80 steel pipelines: an experimental and numerical investigation[J]. Journal of Pipeline Science and Engineering, 2021, 1(2): 212-224.
[19] LIU M, WANG Y Y, ZHANG F, KOTIAN K. Realistic strain capacity models for pipeline construction and maintenance:CRES US DOT Contract No. DTPH56-06-T000016 final report[R]. Dublin: Center for Reliable Energy Systems, 2013:A1-10.
[20] KIBEY S, WANG X Y, MINNAAR K, MACIA M L, FAIRCHIL D P, KAN W C, et al. Tensile strain capacity equations for strain-based design of welded pipelines[C]. Calgary: 8th International Pipeline Conference, 2010: 31661.
[21] 张振永.高钢级大口径天然气管道环焊缝安全提升设计关键[J].油气储运,2020,39(7):740-748. ZHANG Z Y. Key factors for safety improvement design of girth weld in high-grade large diameter natural gas pipelines[J]. Oil & Gas Storage and Transportation, 2020, 39(7): 740-748.
[22] KRAIDI L, SHAH R, MATIPA W, BORTHWICK F. An investigation of mitigating the safety and security risks allied with oil and gas pipeline projects[J]. Journal of Pipeline Science and Engineering, 2021, 1(3): 349-359.
[23] CAZENAVE P, JIMENEZ K, GAO M, MONETA A, HRYCIUK P. Hydrogen assisted cracking driven by cathodic protection operated at near -1 200 mV CSE – an onshore natural gas pipeline failure[J]. Journal of Pipeline Science and Engineering, 2021, 1(1): 100-121.
[24] 张振永.中俄东线X80钢级φ1 422管道工程设计关键技术应用[J].焊管,2019,42(7):64-71. ZHANG Z Y. Application of key technologies in design of X80 φ1 422 mm pipeline engineering of China-Russia East Natural Gas Pipeline Project[J]. Welded Pipe and Tube, 2019, 42(7): 64-71.
[25] 周亚薇,张振永.中俄东线天然气管道环焊缝断裂韧性设计[J].油气储运,2018,37(10):1174-1179,1191. ZHOU Y W, ZHANG Z Y. The design for the fracture toughness of girth weld in China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1174-1179, 1191.
[26] 张振永,张文伟,周亚薇,薄国公,邹宇.中俄东线OD 1 422 mm埋地管道的断裂控制设计[J].油气储运,2017,36(9):1059-1064. ZHANG Z Y, ZHANG W W, ZHOU Y W, BO G G, ZOU Y. The fracture control design of the OD 1 422 mm buried pipeline in China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36(9): 1059-1063.
[27] ZHENG Q, GRAF-ALEXIOU L, LI Y, YOOSEF-GHODSI N, FOWLER M, KAINAT M, et al. Strain demand of elastic pipes subjected to permanent ground displacements using the finite difference method[J]. Journal of Pipeline Science and Engineering, 2021, 1(2): 176-186.
[28] 蒋庆梅,张小强,张弥,李朝.中俄东线天然气管道环焊缝断裂韧性的确定[J].焊接技术,2017,46(9):82-85. JIANG Q M, ZHANG X Q, ZHANG M, LI C. Determination of fracture toughness for girth weld in China-Russia Eastern Natural Gas Pipeline[J]. Welding Technology, 2017, 46(9): 82-85.
[29] KUANG W Y. Numerical study of strain-based monitoring parameter on steel strip reinforced thermoplastic pipe (SSRTP) under internal pressure[J]. Journal of Pipeline Science and Engineering, 2021, 1(2): 233-240.
[30] 张振永,周亚薇,张金源.采用失效评估图确定新建油气管道环焊缝断裂韧性的方法[J].焊接技术,2017,46(7):72-76. ZHANG Z Y, ZHOU Y W, ZHANG J Y. By using ECA to determination of fracture toughness for girth weld in new oil and gas pipeline[J]. Welding Technology, 2017, 46(7): 72-76.
[1]杨悦,张宏,刘啸奔,等.焊接材料强度对高钢级管道环焊缝应变能力的影响[J].油气储运,2022,41(01):48.[doi:10.6047/j.issn.1000-8241.2022.01.007]
YANG Yue,ZHANG Hong,LIU Xiaoben,et al.Influence of welding material strength on strain capacity of girth welds in high-grade steel pipelines[J].Oil & Gas Storage and Transportation,2022,41(04):48.[doi:10.6047/j.issn.1000-8241.2022.01.007]
易斐宁,男,1981年生,工程师,2010年毕业于河北工业大学计算机科学与技术专业,现主要从事油气长输管道工程项目与工程质量方面的管理及研究工作。地址:河北省廊坊市广阳区新开路408号,065000。电话:0316-2170646。Email:yifn@pipechina.com.cn
基金项目:国家重点研发计划项目“临海油气管道及陆上终端设施损伤机理与演化规律研究”,2016YFC0802301;国家自然科学基金资助项目“逆断层作用下X80管道屈曲演化与韧性破损机理研究”,52004314;中石油管道有限责任公司科学研究与技术开发项目“油气管道焊接接头强度匹配及残余应力控制技术研究”, 2018B-3007-0502;新疆自治区天山青年计划项目“复杂载荷作用下高钢级管道韧性断裂与后屈曲失效行为”,2019Q088;中国石油大学(北京)科研基金青年拔尖人才项目“断层作用下高强钢管道失效机理与可靠性评价”,2462018YJRC019;中国石油大学(北京)科研基金资助项目“基于大数据的天然气管网智能运行与控制研究”, 2462020YXZZ045。
(收稿日期:2021-06-25;修回日期:2022-01-25;编辑:韩文超)