网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
盐穴储气库是天然气储存与调峰的重要设施。为分析矿柱宽度对盐穴双储库腔体稳定性的影响,在保证腔体安全、提高造腔效率、最大化利用盐层的基础上,以金坛盐穴地下储气库为例,依据变形稳定理论,基于FLAC 3D 软件,利用有限元分析方法建立双储库数值模型,模拟分析不同矿柱宽度条件下双腔体的稳定性,确定盐穴双储库合理矿柱宽度,分析合理矿柱宽度内双腔体间的最大破损距离、破损区体积、无损宽度、收缩率的变化规律。结果表明:研究区双储库合理矿柱宽度为1.5~2.5 倍腔体直径;在合理矿柱宽度下,矿柱宽度与最大破损区距离呈正比,与破损区体积关系不大,与无损宽度和腔体收缩率呈反比;随蠕变时间延长,最大破损区距离、破损区体积及收缩率逐渐增大,无损宽度逐渐减小;金坛盐穴储气库设计矿柱宽度平均为2.0 倍腔体直径,在合理矿柱范围内,现场应用证实了双储库稳定性模型可靠性较好,准确性较高。(图13,表1,参20)
Salt cavern gas storage is an important facility for storage and peak-load sheaving of natural gas. In order to analyze the effects of pillar width on the stability of double-cavity salt cavern storage, by taking Jintan Underground Salt Cavern Storage as an example, a numerical model of double-cavity storage was established with the finite element analysis method on the FLAC 3D software platform based on the deformation stability theory under the precondition of ensuring the cavity safety, improving the solution mining efficiency and maximizing the utilization ratio of salt bed. Besides, simulation analysis was conducted for the stability of the double-cavity salt cavern storage with different pillar widths, the reasonable pillar width of the double-cavity salt cavern storage was identified, and further, the change law of the maximum damage length, damage volume, nondestructive width and volumetric shrinkage of the double cavities with reasonable pillar width was studied. The results show that the reasonable pillar width of the double-cavity storage was 1.5-2.5 times of the cavity diameter in the study area. In case of reasonable pillar width, the pillar width is proportional to the maximum damage length, has little relation to the damage volume and is inversely proportional to the nondestructive width and volumetric shrinkage. Additionally, the maximum damage length, damage volume and volumetric shrinkage increase gradually, while the nondestructive width decreases with the creep time increasing. The average design pillar width is 2.0 times of the cavity diameter for Jintan Salt Cavern Gas Storage, which is within the reasonable range, and the field applications indicate that the stability model of double-cavity storage is good in reliability and accuracy. (13 Figures, 1 Table, 20 References)
[1] 齐得山,李淑平,王元刚. 金坛盐穴储气库腔体偏溶特征分析[J]. 西南石油大学学报(自然科学版),2019,41(2):75-83.
QI D S,LI S P,WANG Y G. Characteristics of cavity differential dissolution of Jintan salt cave gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2019,41(2): 75-83.
[2] 周学深. 有效的天然气调峰储气技术——地下储气库[J]. 天然气工业,2013,33(10):95-99.
ZHOU X S. An effective means of natural gas peak-shaving and storage technologies: underground gas storage[J]. Natural Gas Industry,2013,33(10): 95-99.
[3] 丁国生,梁婧,任永胜,赵晓飞,冉莉娜. 建设中国天然气调峰储备与应急系统的建议[J]. 天然气工业,2009,29(5):98-100.
DING G S,LIANG J,REN Y S,ZHAO X F,RAN L N. Suggestions on establishing peak-shaving reserve and emergency system in China[J]. Natural Gas Industry,2009,29(5): 98-100.
[4] MRAZ D Z,CROWE M B,DUSSEAULT M B. Determination of solution cavern spacing in deep salt deposit[C]. Evanston: The 25th U.S. Symposium on Rock Mechanics (USRMS),1984: ARMA-84-0546.
[5] 吴文,侯正猛,杨春和. 盐岩中能源(石油和天然气)地下储存库稳定性评价标准研究[J]. 岩石力学与工程学报,2005,24(14):2497-2505.
WU W,HOU Z M,YANG C H. Investigations on evaluating criteria of stabilities for energy (petroleum and natural gas) storage caverns in rock salt[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(14): 2497-2505.
[6] 王同涛,闫相祯,杨恒林,杨秀娟. 多夹层盐穴储气库群间矿柱稳定性研究[J]. 煤炭学报,2011,36(5):790-795.
WANG T T,YAN X Z,YANG H L,YANG X J. Stability analysis of pillars between bedded salt cavern gas storages[J]. Journal of China Coal Society,2011,36(5): 790-795.
[7] 陈卫忠,伍国军,戴永浩,杨春和. 废弃盐穴地下储气库稳定性研究[J]. 岩石力学与工程学报,2006,25(4):848-854.
CHEN W Z,WU G J,DAI Y H,YANG C H. Stability analysis of abandoned salt caverns used for underground gas storage[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(4): 848-854.
[8] 杨春和,李银平,陈锋. 层状盐岩力学理论与工程[M]. 北京:科学出版社,2009:1-6.
YANG C H,LI Y P,CHEN F. Mechanical theory and engineering of beded salt rock[M]. Beijing: Science Press,2009: 1-6.
[9] 杨强,刘耀儒,冷旷代,吕庆超,杨春和. 能源储备地下库群稳定性与连锁破坏分析[J]. 岩土力学,2009,30(12):3553-3561,3568.
YANG Q,LIU Y R,LENG K D,LYU Q C,YANG C H. Stability and chain destruction analysis of underground energy storage cluster based on deformation reinforcement theory[J]. Rock and Soil Mechanics,2009,30(12): 3553-3561,3568.
[10] 杨强,潘元炜,邓检强,刘耀儒. 地下盐岩储库群临界间距与破损分析[J]. 岩石力学与工程学报,2012,31(9):1729-1736.
YANG Q,PAN Y W,DENG J Q,LIU Y R. Critical spacing and damage analysis of underground energy storage group in salt rock[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(9): 1729-1736.
[11] 刘健,宋娟,张强勇,张文倩,贾超,李术才,等. 盐岩地下储气库群间距数值计算分析[J]. 岩石力学与工程学报,2011,30(增刊2):3413-3420.
LIU J,SONG J,ZHANG Q Y,ZHANG W Q,JIA C,LI S C,et al. Numerical calculation and analysis of distance among salt rock underground gas storage caverns[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(S2): 3413-3420.
[12] 张新生,常晓云,蒋丽云,骆正山. 盐穴地下储气库稳定性评价系统及其应用[J]. 天然气工业,2015,35(11):83-90.
ZHANG X S,CHANG X Y,JIANG L Y,LUO Z S. Salt cavern UGS stability evaluation system and its application[J]. Natural Gas Industry,2015,35(11): 83-90.
[13] 完颜祺琪,冉莉娜,韩冰洁,蔡茂佳,李琦. 盐穴地下储气库库址地质评价与建库区优选[J]. 西南石油大学学报(自然科学版),2015,37(1):57-64.
WANYAN Q Q,RAN L N,HAN B J,CAI M J,LI Q. Study on site selection and evaluation of underground gas storage in salt cavern[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2015,37(1): 57-64.
[14] 何俊,井岗,赵岩,王成林,成凡. 盐穴储气库快速造腔方案[J]. 油气储运,2020,39(12):1435-1440.
HE J,JING G,ZHAO Y,WANG C L,CHENG F. Accelerated mining method for salt-cavern gas storage[J]. Oil & Gas Storage and Transportation,2020,39(12):1435-1440.
[15] 王元刚,高寒,薛雨. 盐穴储气库水溶造腔的影响因素[J]. 油气储运,2020,39(6):662-667.
WANG Y G,GAO H,XUE Y. Influencing factors of solution mining for salt cavern gas storage[J]. Oil & Gas Storage and Transportation,2020,39(6):662-667.
[16] 丁国生. 金坛盐穴地下储气库建库关键技术综述[J]. 天然气工业,2007,27(3):111-113.
DING G S. General introduction on key technologies of the construction of Jintan underground salt cavern gas storage[J]. Natural Gas Industry,2007,27(3): 111-113.
[17] 先智伟,谢箴. 地下储气库的地质条件要求和选型[J]. 天然气与石油,2004,22(2):5-7.
XIAN Z W,XIE Z. Geological condition requirement and selection of underground natural gas storage[J]. Natural Gas and Oil,2004,22(2): 5-7.
[18] 陈金平,贾善坡,张雪松,井文君,龚俊. 含夹层盐岩椭球储气库极限压力[J]. 中国石油大学学报(自然科学版),2018,42(4):135-142.
CHEN J P,JIA S P,ZHANG X S,JING W J,GONG J. Limit pressure of ellipsoid gas storage in laminated salt rocks[J]. Journal of China University of Petroleum (Edition of Natural Science),2018,42(4): 135-142.
[19] 李建君,陈加松,吴斌,汪会盟,王晓刚,敖海兵,等. 盐穴地下储气库盐岩力学参数的校准方法[J]. 天然气工业,2015,35(7):96-102.
LI J J,CHEN J S,WU B,WANG H M,WANG X G,AO H B,et al. A calibration method for salt rock mechanics parameters of salt-cavern gas storage[J]. Natural Gas Industry,2015,35(7): 96-102.
[20] 丁国生,张保平,杨春和,谢萍,田国荣. 盐穴储气库溶腔收缩规律分析[J]. 天然气工业,2007,27(11):94-96,99.
DING G S,ZHANG B P,YANG C H,XIE P,TIAN G R. The creep deformation rule of gas storage salt cavern[J]. Natural Gas Industry,2007,27(11): 94-96,99.
收稿日期:2019-12-28;修回日期:2021-05-10;编辑:刘朝阳
基金项目:中国石油天然气股份有限公司重大科技专项资助项目“华北油田持续有效稳产勘探开发关键技术研究与应用”,2017E-15。
作者简介:薛辉,男,1986 年生,工程师,2014 年硕士毕业于西南石油大学矿产普查与勘探专业,现主要从事盐穴储气库地质研究、设计、监测等方面的研究工作。地址:河北省任丘市华北油田分公司勘探开发研究院,062550。电话:0317-2720629。Email:wty_xhui@petrochina.com.cn