网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
智慧管网具有全面感知、自动预判、自适应、自反馈、自学习等特征优势,近年来得到迅速发展,国内外智慧管网的侧重点有所不同,国外侧重于使用现代模型方法升级传统技术方法,而国内侧重于智慧系统的规划和整体设计。目前中国智慧管网建设仍处于起步阶段,在数字孪生体构建、传感技术、精准检测和评价、决策支持、模型构建、信息共享、大数据深度挖掘等方面缺乏系统性、规划性、科学性,基础模型和智能决策不足。阐述了智慧管网在国家管网多条管道上的开发与应用,逐步实现了设计、施工、运行等多环节覆盖。针对存在的问题,提出了解决方案:管网智能巡护,智慧管网的人工智能,视频实时监控智能识别,管道智能化应急防范,构建基于多源数据的智能化管理平台,灾害一体化智能监测与预警,管道完整性大数据融合、建模、决策支持等。建议进一步采用物联网、云平台、区块链等技术,研究建立管道全生命周期数据标准,构建管道全生命周期数据库,开展智能管网平台设计,包括管道全生命周期资产管控、运行控制、决策支持,最终形成基于多源数据融合的智能一体化管理平台。(参21)
With the main features of comprehensive perception, automatic prediction, self-adaptation, self-feedback and selflearning, the intelligent pipeline network has been developed rapidly in recent years. However, the focus of intelligent network varies at home and abroad. The focus is to upgrade the traditional technologies with modern models in foreign countries while the planning and overall design of intelligent system is focused in China. The construction of intelligent pipeline network in China is still in its early stages, it lacks of systematicness, planning and scientificity in construction of digital twins, sensing technology, accurate detection and evaluation, decision-making support, modeling, information sharing and deep mining of big data, and the basic model and intelligent decision-making are insufficient. The development and application of intelligent pipeline network in multiple pipelines of PipeChina were illustrated, with the coverage of such links as design, construction and operation realized. As for the existing problems, the following solutions were put forward: intelligent patrol, artificial intelligence of intelligent pipeline network, real-time video monitoring and intelligent recognition, intelligent emergency preparedness, construction of intelligent platform based on multi-source data, integrated intelligent monitoring and early warning of disasters, big data fusion, modeling and decision-making support of pipeline integrity, etc. It is recommended to further develop the full-life-cycle data standard of pipeline, build full-life-cycle database of pipeline, organize the platform design of intelligent pipeline network, including the asset management and control, operation control and decision-making support in the full-life-cycle of pipeline, and finally form an intelligent integrated management platform based on multi-source data fusion with the technologies of Internet of Things, cloud platform and blockchain, etc. (21 References)
[1] 吴长春,左丽丽. 关于中国智慧管道发展的认识与思考[J]. 油气储运,2020,39(4):361-370. WU C C, ZUO L L. Understanding and thinking on the development of China’s intelligent pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(4): 361-370.
[2] 蔡永军,蒋红艳,王继方,王潇潇,李莉,陈国群,等. 智慧管道总体架构设计及关键技术[J]. 油气储运,2019,38(2):121-129.
CAI Y J, JIANG H Y, WANG J F, WANG X X, LI L, CHEN G Q, et al. The overall architecture design and key construction technologies of intelligent pipelines[J]. Oil & Gas Storage and Transportation, 2019, 38(2): 121-129.
[3] 张海峰,蔡永军,李柏松,孙巍,王海明,杨喜良. 智慧管道站场设备状态监测关键技术[J]. 油气储运,2018,37(8):841-849.
ZHANG H F, CAI Y J, LI B S, SUN W, WANG H M, YANG X L. Key technologies of equipment condition monitoring at the station of smart pipeline[J]. Oil & Gas Storage and Transportation, 2018, 37(8): 841-849.
[4] 董绍华,张河苇. 基于大数据的全生命周期智能管网解决方案[J]. 油气储运,2017,36(1):28-36.
DONG S H, ZHANG H W. Solution of full-life-cycle intelligent pipeline network based on big data[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 28-36.
[5] Accenture. Accenture and GE[EB/OL]. (2018-05-21)[2020-11-20]. https://www.accenture.com/us-en/insights/industry-x-0/accenture-ge-alliance.
[6] HOCHSTEIN A, HORN E, PALOMINO M. Intelligent pipeline solution: leveraging breakthrough industrial internet technologies and big data analytics for safer, more efficient oil and gas pipeline operations[C]. Berlin: Pipeline Technology Conference 2015, 2015: 1-12.
[7] DNV GL Group. Snam looks to data science for improved gas transport[EB/OL]. (2019-03-07)[2020-11-20]. https://www.dnvgl.com/oilgas/perspectives/snam-looks-to-data-science-forimproved-gas-transport.html.
[8] SCHWARZ L, ROBL K, WAKOLBINGER W, MÜHLING H, ZARADKIEWICZ P. GIS based, heuristic approach for pipeline route corridor selection[J]. Engineering Geology for Society and Territory, 2014, 6: 291-294.
[9] SADOVNYCHIY S, CANUL E A, LÓPEZ J M, SADOVNYCHYY A, HERNANDEZ M A. GIS systems on the pipelines thermographic aerial inspection[C]. Porto: GISTAM, 2017: 1-18.
[10] BASSAM A, ORTEGA-TOLEDO D, HERNANDEZ J A, GONZALEZ-RODRIGUEZ J G, URUCHURTU J. Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel[J]. Journal of Solid State Electrochemistry, 2009, 13: 773-780.
[11] KHALAJ G, AZIMZADEGAN T, KHOEINI M, ETAAT M. Artificial neural networks application to predict the ultimate tensile strength of X70 pipeline steels[J]. Neural Computing and Applications, 2013, 23(7): 2301-2308.
[12] AZIMZADEGAN T, KHOEINI M, ETAAT M, KHOSHAKHLAGH A. An artificial neural-network model for impact properties in X70 pipeline steels[J]. Neural Computing and Applications, 2013, 23(5): 1473-1480.
[13] K, KIRUBAKARAN A P, MURALI KRISHNA I V. Pipeline crack detection using mathematical morphological operator[M]//MARGRET ANOUNCIA S, WIIL U. Knowledge computing and its applications. Singapore, 2018: 29-46.
[14] PRIYANKA E B, MAHESWARI C, THANGAVEL S. Proactive decision making based IoT framework for an oil pipeline transportation system[C].Madurai: ICCBI 2018, 2018:108-119.
[15] HOLI P, PARK S S, PATIL A K, KUMAR G A, CHAI Y H. Intelligent reconstruction and assembling of pipeline from point cloud data in smart plant 3D[C]. Gwangju: Advances in Multimedia Information Processing - PCM 2015, 2015: 360-370.
[16] 熊明,古丽,吴志锋,邓勇,李双琴,邹妍,等. 在役油气管道数字孪生体的构建及应用[J]. 油气储运,2019,38(5):503-509.
XIONG M, GU L, WU Z F, DENG Y, LI S Q, ZOU Y, et al. Construction and application of digital twin in the in-service oil and gas pipeline[J]. Oil & Gas Storage and Transportation, 2019, 38(5): 503-509.
[17] 周永涛,董绍华,董秦龙,王东营. 基于完整性管理的应急决策支持系统[J]. 油气储运,2015,34(12):1280-1283.
ZHOU Y T, DONG S H, DONG Q L, WANG D Y. Emergency decision support system based on integrity management[J]. Oil & Gas Storage and Transportation, 2015, 34(12): 1280-1283.
[18] 董绍华. 中国油气管道完整性管理20 年回顾与发展建议[J]. 油气储运,2020,39(3):241-261.
DONG S H. Review of China’s oil and gas pipeline integrity management in the past 20 years and development suggestions[J]. Oil & Gas Storage and Transportation, 2020, 39(3): 241-261.
[19] 姜昌亮. 中俄东线天然气管道工程管理与技术创新[J]. 油气储运,2020,39(2):121-129.
JIANG C L. Management and technological innovation in China-Russia Eastern Gas Pipeline Project[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 121-129.
[20] 董绍华,安宇. 基于大数据的管道系统数据分析模型及应用[J]. 油气储运,2015,34(10):1027-1032.
DONG S H, AN Y. Data analysis model and application of pipeline system based on big data[J]. Oil & Gas Storage and Transportation, 2015, 34(10): 1027-1032.
[21] 董绍华. 管道大数据决策支持技术[M]. 北京:科学出版社,2020:18-25.
DONG S H. Technology of pipeline decision based on big data[M]. Beijing: Science Press, 2020: 18-25.
[1]税碧垣 张栋 李莉 薛鲁宁 陈国群.智慧管网主要特征与建设构想[J].油气储运,2019,38(12):1.
SHUI Biyuan,ZHANG Dong,LI Li,et al.Main characteristics and construction conception of intelligent pipeline network[J].Oil & Gas Storage and Transportation,2019,38(03):1.
[2]税碧垣.智慧管网总体架构与发展策略思考[J].油气储运,2020,39(11):1201.[doi:10.6047/j.issn.1000-8241.2020.11.001]
SHUI Biyuan.Thinking on overall structure and development strategy of intelligent pipeline network[J].Oil & Gas Storage and Transportation,2020,39(03):1201.[doi:10.6047/j.issn.1000-8241.2020.11.001]
[3]税碧垣.智慧管网的基本概念与总体建设思路[J].油气储运,2020,39(12):1321.[doi:10.6047/j.issn.1000-8241.2020.12.001]
SHUI Biyuan.Basic concepts and general ideas of intelligent pipeline network[J].Oil & Gas Storage and Transportation,2020,39(03):1321.[doi:10.6047/j.issn.1000-8241.2020.12.001]
[4]李锴,李江,顾清林,等.西气东输智慧管网建设实践[J].油气储运,2021,40(03):241.[doi:10.6047/j.issn.1000-8241.2021.03.001]
LI Kai,LI Jiang,GU Qinglin,et al.Practice of intelligent pipeline network development in West-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2021,40(03):241.[doi:10.6047/j.issn.1000-8241.2021.03.001]
[5]刘刚,袁子云,陈雷,等.混合建模方法在油气管网中的应用初探[J].油气储运,2021,40(09):980.[doi:10.6047/j.issn.1000-8241.2021.09.003]
LIU Gang,YUAN Ziyun,CHEN Lei,et al.Preliminary study on application of hybrid modeling method in oil and gas pipeline networks[J].Oil & Gas Storage and Transportation,2021,40(03):980.[doi:10.6047/j.issn.1000-8241.2021.09.003]
[6]张宏,季蓓蕾,刘燊,等.地质灾害段管道结构安全数字孪生机理模型[J].油气储运,2021,40(10):1099.[doi:10.6047/j.issn.1000-8241.2021.10.003]
ZHANG Hong,JI Beilei,LIU Shen,et al.Digital Twin mechanism model for the structural safety of pipelines in geohazards area[J].Oil & Gas Storage and Transportation,2021,40(03):1099.[doi:10.6047/j.issn.1000-8241.2021.10.003]
[7]王金江,于昊天,张凤丽,等.基于数字孪生的智慧油气站场设计与开发[J].油气储运,2022,41(04):391.[doi:10.6047/j.issn.1000-8241.2022.04.004]
WANG Jinjiang,YU Haotian,ZHANG Fengli,et al.Design and development of intelligent oil and gas stations based on digital twin[J].Oil & Gas Storage and Transportation,2022,41(03):391.[doi:10.6047/j.issn.1000-8241.2022.04.004]
[8]李明昊,冯新.基于增强现实的管网安全评价数字孪生方法[J].油气储运,2022,41(05):525.[doi:10.6047/j.issn.1000-8241.2022.05.004]
LI Minghao,FENG Xin.Digital twin method for safety assessment of pipeline networks based on augmented reality[J].Oil & Gas Storage and Transportation,2022,41(03):525.[doi:10.6047/j.issn.1000-8241.2022.05.004]
[9]蔡巍,孙广宇,杨飞,等.基于网格与域质心权重的自适应k-means聚类GDCW-AKM算法[J].油气储运,2025,44(03):1.
CAI Wei,SUN Guangyu,YANG Fei,et al.Adaptive k-means clustering algorithm based on grid and domain centroid weight[J].Oil & Gas Storage and Transportation,2025,44(03):1.
[10]陈斯迅,李在蓉,王禹钦,等.管道数字孪生体模型的构建及应用[J].油气储运,2021,40(06):643.[doi:10.6047/j.issn.1000-8241.2021.06.006]
CHEN Sixun,LI Zairong,WANG Yuqin,et al.Construction and application of Digital Twin model of pipeline[J].Oil & Gas Storage and Transportation,2021,40(03):643.[doi:10.6047/j.issn.1000-8241.2021.06.006]
收稿日期:2020-11-20;修回日期:2020-12-11;编辑:张雪琴
基金项目:国家重点研发计划资助项目“国家石油天然气储备库安全保障技术与装备研发”,2017YFC0805800;中国工程院咨询研究项目“油气长输管道国家治理体系战略问题研究”,2019-zd-37-03;中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项“‘一带一路’海外长输管道完整性关键技术研究与应用”,ZLZX2020-05。
作者简介:董绍华,男,1972年生,教授,博士生导师,2001年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事管道完整性管理、管道信息化、管道运行维护、管道安全工程、大数据决策分析等领域的研究工作。地址:北京市昌平区府学路18 号,102249。电话:010-89733657。Email:shdong@cup.edu.cn