[1]董绍华,张轶男,左丽丽.中外智慧管网发展现状与对策方案[J].油气储运,2021,40(03):249-255.[doi:10.6047/j.issn.1000-8241.2021.03.002]
 DONG Shaohua,ZHANG Yinan,ZUO Lili.Intelligent pipeline network at home and abroad: recent development, existing problems and solutions[J].Oil & Gas Storage and Transportation,2021,40(03):249-255.[doi:10.6047/j.issn.1000-8241.2021.03.002]
点击复制

中外智慧管网发展现状与对策方案

参考文献/References:

[1] 吴长春,左丽丽. 关于中国智慧管道发展的认识与思考[J]. 油气储运,2020,39(4):361-370. WU C C, ZUO L L. Understanding and thinking on the development of China’s intelligent pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(4): 361-370.
[2] 蔡永军,蒋红艳,王继方,王潇潇,李莉,陈国群,等. 智慧管道总体架构设计及关键技术[J]. 油气储运,2019,38(2):121-129.
CAI Y J, JIANG H Y, WANG J F, WANG X X, LI L, CHEN G Q, et al. The overall architecture design and key construction technologies of intelligent pipelines[J]. Oil & Gas Storage and Transportation, 2019, 38(2): 121-129.
[3] 张海峰,蔡永军,李柏松,孙巍,王海明,杨喜良. 智慧管道站场设备状态监测关键技术[J]. 油气储运,2018,37(8):841-849.
ZHANG H F, CAI Y J, LI B S, SUN W, WANG H M, YANG X L. Key technologies of equipment condition monitoring at the station of smart pipeline[J]. Oil & Gas Storage and Transportation, 2018, 37(8): 841-849.
[4] 董绍华,张河苇. 基于大数据的全生命周期智能管网解决方案[J]. 油气储运,2017,36(1):28-36.
DONG S H, ZHANG H W. Solution of full-life-cycle intelligent pipeline network based on big data[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 28-36.
[5] Accenture. Accenture and GE[EB/OL]. (2018-05-21)[2020-11-20]. https://www.accenture.com/us-en/insights/industry-x-0/accenture-ge-alliance.
[6] HOCHSTEIN A, HORN E, PALOMINO M. Intelligent pipeline solution: leveraging breakthrough industrial internet technologies and big data analytics for safer, more efficient oil and gas pipeline operations[C]. Berlin: Pipeline Technology Conference 2015, 2015: 1-12.
[7] DNV GL Group. Snam looks to data science for improved gas transport[EB/OL]. (2019-03-07)[2020-11-20]. https://www.dnvgl.com/oilgas/perspectives/snam-looks-to-data-science-forimproved-gas-transport.html.
[8] SCHWARZ L, ROBL K, WAKOLBINGER W, MÜHLING H, ZARADKIEWICZ P. GIS based, heuristic approach for pipeline route corridor selection[J]. Engineering Geology for Society and Territory, 2014, 6: 291-294.
[9] SADOVNYCHIY S, CANUL E A, LÓPEZ J M, SADOVNYCHYY A, HERNANDEZ M A. GIS systems on the pipelines thermographic aerial inspection[C]. Porto: GISTAM, 2017: 1-18.
[10] BASSAM A, ORTEGA-TOLEDO D, HERNANDEZ J A, GONZALEZ-RODRIGUEZ J G, URUCHURTU J. Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel[J]. Journal of Solid State Electrochemistry, 2009, 13: 773-780.
[11] KHALAJ G, AZIMZADEGAN T, KHOEINI M, ETAAT M. Artificial neural networks application to predict the ultimate tensile strength of X70 pipeline steels[J]. Neural Computing and Applications, 2013, 23(7): 2301-2308.
[12] AZIMZADEGAN T, KHOEINI M, ETAAT M, KHOSHAKHLAGH A. An artificial neural-network model for impact properties in X70 pipeline steels[J]. Neural Computing and Applications, 2013, 23(5): 1473-1480.
[13] K, KIRUBAKARAN A P, MURALI KRISHNA I V. Pipeline crack detection using mathematical morphological operator[M]//MARGRET ANOUNCIA S, WIIL U. Knowledge computing and its applications. Singapore, 2018: 29-46.
[14] PRIYANKA E B, MAHESWARI C, THANGAVEL S. Proactive decision making based IoT framework for an oil pipeline transportation system[C].Madurai: ICCBI 2018, 2018:108-119.
[15] HOLI P, PARK S S, PATIL A K, KUMAR G A, CHAI Y H. Intelligent reconstruction and assembling of pipeline from point cloud data in smart plant 3D[C]. Gwangju: Advances in Multimedia Information Processing - PCM 2015, 2015: 360-370.
[16] 熊明,古丽,吴志锋,邓勇,李双琴,邹妍,等. 在役油气管道数字孪生体的构建及应用[J]. 油气储运,2019,38(5):503-509.
XIONG M, GU L, WU Z F, DENG Y, LI S Q, ZOU Y, et al. Construction and application of digital twin in the in-service oil and gas pipeline[J]. Oil & Gas Storage and Transportation, 2019, 38(5): 503-509.
[17] 周永涛,董绍华,董秦龙,王东营. 基于完整性管理的应急决策支持系统[J]. 油气储运,2015,34(12):1280-1283.
ZHOU Y T, DONG S H, DONG Q L, WANG D Y. Emergency decision support system based on integrity management[J]. Oil & Gas Storage and Transportation, 2015, 34(12): 1280-1283.
[18] 董绍华. 中国油气管道完整性管理20 年回顾与发展建议[J]. 油气储运,2020,39(3):241-261.
DONG S H. Review of China’s oil and gas pipeline integrity management in the past 20 years and development suggestions[J]. Oil & Gas Storage and Transportation, 2020, 39(3): 241-261.
[19] 姜昌亮. 中俄东线天然气管道工程管理与技术创新[J]. 油气储运,2020,39(2):121-129.
JIANG C L. Management and technological innovation in China-Russia Eastern Gas Pipeline Project[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 121-129.
[20] 董绍华,安宇. 基于大数据的管道系统数据分析模型及应用[J]. 油气储运,2015,34(10):1027-1032.
DONG S H, AN Y. Data analysis model and application of pipeline system based on big data[J]. Oil & Gas Storage and Transportation, 2015, 34(10): 1027-1032.
[21] 董绍华. 管道大数据决策支持技术[M]. 北京:科学出版社,2020:18-25.
DONG S H. Technology of pipeline decision based on big data[M]. Beijing: Science Press, 2020: 18-25.

相似文献/References:

[1]税碧垣 张栋 李莉 薛鲁宁 陈国群.智慧管网主要特征与建设构想[J].油气储运,2019,38(12):1.
 SHUI Biyuan,ZHANG Dong,LI Li,et al.Main characteristics and construction conception of intelligent pipeline network[J].Oil & Gas Storage and Transportation,2019,38(03):1.
[2]税碧垣.智慧管网总体架构与发展策略思考[J].油气储运,2020,39(11):1201.[doi:10.6047/j.issn.1000-8241.2020.11.001]
 SHUI Biyuan.Thinking on overall structure and development strategy of intelligent pipeline network[J].Oil & Gas Storage and Transportation,2020,39(03):1201.[doi:10.6047/j.issn.1000-8241.2020.11.001]
[3]税碧垣.智慧管网的基本概念与总体建设思路[J].油气储运,2020,39(12):1321.[doi:10.6047/j.issn.1000-8241.2020.12.001]
 SHUI Biyuan.Basic concepts and general ideas of intelligent pipeline network[J].Oil & Gas Storage and Transportation,2020,39(03):1321.[doi:10.6047/j.issn.1000-8241.2020.12.001]
[4]李锴,李江,顾清林,等.西气东输智慧管网建设实践[J].油气储运,2021,40(03):241.[doi:10.6047/j.issn.1000-8241.2021.03.001]
 LI Kai,LI Jiang,GU Qinglin,et al.Practice of intelligent pipeline network development in West-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2021,40(03):241.[doi:10.6047/j.issn.1000-8241.2021.03.001]
[5]刘刚,袁子云,陈雷,等.混合建模方法在油气管网中的应用初探[J].油气储运,2021,40(09):980.[doi:10.6047/j.issn.1000-8241.2021.09.003]
 LIU Gang,YUAN Ziyun,CHEN Lei,et al.Preliminary study on application of hybrid modeling method in oil and gas pipeline networks[J].Oil & Gas Storage and Transportation,2021,40(03):980.[doi:10.6047/j.issn.1000-8241.2021.09.003]
[6]张宏,季蓓蕾,刘燊,等.地质灾害段管道结构安全数字孪生机理模型[J].油气储运,2021,40(10):1099.[doi:10.6047/j.issn.1000-8241.2021.10.003]
 ZHANG Hong,JI Beilei,LIU Shen,et al.Digital Twin mechanism model for the structural safety of pipelines in geohazards area[J].Oil & Gas Storage and Transportation,2021,40(03):1099.[doi:10.6047/j.issn.1000-8241.2021.10.003]
[7]王金江,于昊天,张凤丽,等.基于数字孪生的智慧油气站场设计与开发[J].油气储运,2022,41(04):391.[doi:10.6047/j.issn.1000-8241.2022.04.004]
 WANG Jinjiang,YU Haotian,ZHANG Fengli,et al.Design and development of intelligent oil and gas stations based on digital twin[J].Oil & Gas Storage and Transportation,2022,41(03):391.[doi:10.6047/j.issn.1000-8241.2022.04.004]
[8]李明昊,冯新.基于增强现实的管网安全评价数字孪生方法[J].油气储运,2022,41(05):525.[doi:10.6047/j.issn.1000-8241.2022.05.004]
 LI Minghao,FENG Xin.Digital twin method for safety assessment of pipeline networks based on augmented reality[J].Oil & Gas Storage and Transportation,2022,41(03):525.[doi:10.6047/j.issn.1000-8241.2022.05.004]
[9]蔡巍,孙广宇,杨飞,等.基于网格与域质心权重的自适应k-means聚类GDCW-AKM算法[J].油气储运,2025,44(03):1.
 CAI Wei,SUN Guangyu,YANG Fei,et al.Adaptive k-means clustering algorithm based on grid and domain centroid weight[J].Oil & Gas Storage and Transportation,2025,44(03):1.
[10]陈斯迅,李在蓉,王禹钦,等.管道数字孪生体模型的构建及应用[J].油气储运,2021,40(06):643.[doi:10.6047/j.issn.1000-8241.2021.06.006]
 CHEN Sixun,LI Zairong,WANG Yuqin,et al.Construction and application of Digital Twin model of pipeline[J].Oil & Gas Storage and Transportation,2021,40(03):643.[doi:10.6047/j.issn.1000-8241.2021.06.006]

备注/Memo

收稿日期:2020-11-20;修回日期:2020-12-11;编辑:张雪琴
基金项目:国家重点研发计划资助项目“国家石油天然气储备库安全保障技术与装备研发”,2017YFC0805800;中国工程院咨询研究项目“油气长输管道国家治理体系战略问题研究”,2019-zd-37-03;中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项“‘一带一路’海外长输管道完整性关键技术研究与应用”,ZLZX2020-05。
作者简介:董绍华,男,1972年生,教授,博士生导师,2001年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事管道完整性管理、管道信息化、管道运行维护、管道安全工程、大数据决策分析等领域的研究工作。地址:北京市昌平区府学路18 号,102249。电话:010-89733657。Email:shdong@cup.edu.cn

更新日期/Last Update: 2021-03-25