网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
为了研究SCV 液化天然气气化器水浴内复杂的两相流传热规律,简化SCV 气化器的工程应用计算方法,利用传热学理论,通过忽略烟气对传热过程的影响,简化了传热管束外流体流场、换热管内的温度场和流场,建立了水浴加热-液化天然气气化传热过程的数学模型。将实际运行中的浸没燃烧式液化天然气气化器的工作性能参数带入新建数学模型,计算得到了管外平均对流传热系数、总传热系数、总换热管长、总换热面积,同时根据SCV 气化器的加热负荷、管外测量水流速度等反算上述数学模型中的4 个参数值,结果表明:管外平均传热系数的模型计算结果与实际运行参数的偏差为16.8%,但总传热系数、总换热管长、总换热面积的偏差仅为6.9%、-7.9%以及-7.9%,总体上可满足工程计算的需要,验证了所建数学模型的可靠性。
In order to study the complicated two-phase flow heat transfer process in water bath of liquefied natural gas (LNG) submerged combustion vaporizer (SCV), and simplify the computation of LNG SCV in engineering application, a mathematical model for water bath and LNG vaporization was established after theoretical analysis, based on the theory of heat transfer. This model ignores the effect of flue gas, and simplifies flow field outside the heat transfer tube bundle and temperature and flow fields inside the heat exchange tube bundle. With the new model, actual operational parameters of a LNG SCV were used to calculate the average heat transfer coefficient outside the tube bundle, total heat transfer coefficient, total length and total heat-transfer area of the tube. Then, the derived four parameters were back-calculated depending on heating load and measured water flow velocity outside the tube of the LNG SCV. The results show a deviation of 16.8% between the average heat transfer coefficient outside the tube bundle calculated with this model and the actual parameter. However, deviations in total heat transfer coefficient, total tube length and total heat transfer area are only 6.9%, -7.9% and -7.9%, respectively. Generally, these deviations can meet the demands in engineering calculation. In addition, these results validate the reliability of the model proposed.
[1] 顾安忠,鲁雪生. 液化天然气技术手册[M]. 北京:机械工业出 版社,2010:497-520. GU A Z,LU X S. Handbook of liquefied natural gas[M]. Beijing: China Machine Press,2010:497-520.
[2] CHO J H,MATHUR G,KOTZOT H,et al. Limitations in LNG vaporization process selection[C]. Houston:2005 AIChE Spring National Meeting- Conference Proceedings,2005:2059-2072.
[3] DAVID H. Operating experiences with an integrated selective catalytic reduction system(SCR) operating with submerged combustion vaporizers(SCV)at a North American base load LNG vaporization facility[C]. Houston:2005 AIChE Spring National Meeting- Conference Proceedings,2005:1975-1983.
[4] 陈维汉. 一种考虑综合性能优化的换热器热设计方法(一)[J]. 化工装备技术,2006,27(4):35-43. CHEN W H. Thermal design methods for heat exchangers considering comprehensive performance optimization(1)[J]. Chemical Equipment Technology,2006,27(4):35-43.
[5] IKEDA Y,HIMOTO N,KATO G. Advanced design of submerged combustion vaporizer for low emission operation[C]. Tokyo:2006 AIChE Spring National Meeting,2006:23-27.
[6] 窦兴华. LNG 沉浸式汽化器流动传热过程数值模拟[D]. 大连: 大连理工大学,2007:50-75. DOU X H. Numerical simulation of fluid flow and heat transfer in LNG submerged-combustion vaporizer[D]. Dalian:Dalian University of Technology,2007:50-75.
[7] TAGLIAFICO G,VALSUANI F,TAGLIAFICO L A. Liquefied natural gas submerged combustion vaporization facilities:process integration with power conversion units[J]. International Journal of Energy Research,2013,37(1):80–92.
[8] 尹星懿. 浸没燃烧式气化器原理分析及方案优化[J]. 城镇燃气, 2014(2):9-12. YIN X Y. Principle analysis and scheme optimization of submerged-combustion vaporizer[J]. City Gas,2014(2):9-12.
[9] 程云东. 浸没燃烧式气化器的设计缺陷及改进方法[J]. 油气储 运,2014,33(3):292-294. CHENG Y D. Design defects and modification of submerged combustion vaporizer[J]. Oil & Gas Storage and Transportation, 2014,33(3):292-294.
[10] 李泓钰. 浸没燃烧式LNG 气化器模拟实验研究[D]. 北京:北 京建筑大学,2015:36-51. LI H Y. Simulation and experimental study of submergedcombustion LNG vaporizer[D]. Beijing:Beijing University of Civil Engineering and Architecture,2015:36-51.
[11] 粘权鑫,郭少龙,方文振,等. LNG 浸没燃烧式气化器数值模拟 方法研究[J]. 西安交通大学学报,2016,50(1):1-5. NIAN Q X,GUO S L,FANG W Z,et al. Numerical simulation on LNG submerged combustion vaporizer[J]. Journal of Xi'an Jiaotong University,2016,50(1):1-5.
[12] XU S,CHENG Q,ZHUANG L,et al. LNG vaporizers using various refrigerants as intermediate fluid:Comparison of the required heat transfer area[J]. Journal of Natural Gas Science and Engineering,2015(25):1-9.
[13] MENG H Y,WANG S Z,ZHOU L,et al. Numerical simulation of heat transfer of liquefied natural gas in horizontal circular tubes under supercritical pressure[J]. Advanced Materials Research,2014(6):438-441.
[14] ZUKAUSKAS A. Heat transfer from tubes in crossflow[J]. Advances in Heat Transfer,1987(18):87-159.
[15] 杨世铭,陶文铨. 传热学[M]. 第四版. 北京:高等教育出版社, 2006:246-251. YANG S M,TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press,2006:246-251.
[16] GUNGOR K E,WINTERTON R H S. A general correlation for flow boiling in tubes and annuli[J]. International Journal Heat Mass Transfer,1986,29(3):351-358.
[17] COOPER M G. Saturation nucleate pool boiling- a simple correlation[J]. Industrial and Chemical Engineering Symposium Series,1984,86(2):785-793.
[1]康凤立 孙海峰 熊亚选 邓展飞 刘蓉.浸没燃烧式 LNG 气化器水浴气化传热计算[J].油气储运,2016,35(预出版):1.
KANG Fengli,SUN Haifeng,XIONG Yaxuan,et al.Computation of heat transfer in water bath of LNG SCV[J].Oil & Gas Storage and Transportation,2016,35(4):1.
[2]吴运逸.防护堤对LNG扩散的抑制作用[J].油气储运,2014,33(11):1254.[doi:10.6047/j.issn.1000-8241.2014.11.022]
WU Yunyi.Inhibitory effect of fending groin on LNG diffusion[J].Oil & Gas Storage and Transportation,2014,33(4):1254.[doi:10.6047/j.issn.1000-8241.2014.11.022]
[3]李兆慈,郭保玲,严俊伟.LNG储罐温度场计算及影响因素分析[J].油气储运,2015,34(3):244.[doi:10.6047/j.issn.1000-8241.2015.03.004]
LI Zhaoci,GUO Baoling,YAN Junwei.Calculation and influencing factors of temperature field in LNG tank[J].Oil & Gas Storage and Transportation,2015,34(4):244.[doi:10.6047/j.issn.1000-8241.2015.03.004]
[4]景佳琪,陈军.LNG卸船时预冷速度的控制要点[J].油气储运,2015,34(3):328.[doi:10.6047/j.issn.1000-8241.2015.03.022]
JING Jiaqi,CHEN Jun.Control points of pre-cooling rate during LNG unloading[J].Oil & Gas Storage and Transportation,2015,34(4):328.[doi:10.6047/j.issn.1000-8241.2015.03.022]
[5]杨信一,刘筠竹,李硕.唐山LNG 接收站浸没燃烧式气化器运行优化[J].油气储运,2018,37(10):1153.[doi:10.6047/j.issn.1000-8241.2018.10.011]
YANG Xinyi,LIU Yunzhu,LI Shuo.Operation optimization of submerged combustion vaporizer in
Tangshan LNG receiving station[J].Oil & Gas Storage and Transportation,2018,37(4):1153.[doi:10.6047/j.issn.1000-8241.2018.10.011]
[6]俞光灿 李琦芬 潘登宇 谢伟 王朝龙 杨镇阁.基于不同原理划分的多种LNG冷能利用方式[J].油气储运,2019,38(预出版):1.
YU Guangcan,LI Qifen,PAN Dengyu,et al.Classification of LNG cold energy utilization modes based on different principles[J].Oil & Gas Storage and Transportation,2019,38(4):1.
收稿日期:2015-4-15;改回日期:2015-11-10。
基金项目:北京市科技计划项目“城市燃气场站运营安全与节能关键技术发展及应用”,D151100005515002。
作者简介:康凤立,女,在读硕士生,1989年生,2013年毕业于北华航天工业学院建筑环境与设备工程专业,现主要从事天然气气化利用与气化器设计工作。地址:北京市西城区展览馆路1号,100044。电话:18911295545,Email:kangfengli0224@163.com