网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
介绍了某海洋复合保温软管的结构形式,并推导出理论传热系数的计算方法。根据规范设计了稳态和瞬态两种保温性能实验方案,分别对该复合保温软管进行测试,并对实验数据进行处理分析。通过对理论值与实验值进行对比,发现瞬态实验所得传热系数要小于稳态实验的所得值,稳态实验方案测得的传热系数更加接近于理论值。对比两种实验方案的优缺点可知,采用稳态实验方案获得的数据更加准确可靠。对稳态实验方案得到的实验数据较理论计算值偏小的原因进行了分析,认为理论计算时忽略了夹杂在软管结构内空气的保温效果,是造成理论值大于实验值的主要原因。
This paper introduces the structural style of a marine laminated insulation flexible pipe, and derives the computational method of theoretical heat transfer coefficient. To test the insulating property of the flexible pipe, two experimental programs for insulating property in steady state and transient state were designed as per relevant specifications, and are used respectively to test the laminated insulation flexible pipe. The data measured in the experiments were recorded in detail and processed and analyzed accurately. It is discovered through correlation of theoretical value and experimental value that the heat transfer coefficient obtained from experiment in transient state is lower than that from experiment in steady state, and the heat transfer coefficient measured from the later experiment is closer to the theoretical value. The comparison of these two experimental programs shows that the data obtained from the steady-state experiment program is more accurate and reliable. Furthermore, the causes for the lower experimental data obtained than the theoretical calculated value were analyzed, suggesting that the negligence of insulation effect of air occluded in the flexible pipe architecture at the time of theoretical calculation is the leading cause.
[1] 邬田华,王晓默,许国良,等. 工程传热学[M]. 武汉:华中科技大学出版社,2011.
WU T H. WANG X M, XU G L, et al. Engineering heat conduction[M]. Wuhan: Huazhong University of Science and Technology Press, 2011.
[2] 曹玉璋,邱绪光. 实验传热学[M]. 北京:国防工业出版社,1998.
CAO Y Z, QIU X G. Experimental heat transfer[M]. Beijing: National Defense Industry Press, 1998.
[3] 崔军,成刚,曹声韵,等. GB/T 10296-2008 绝热层稳态传热性质的测定圆管法[S]. 北京:中国标准出版社,2008.
CUI J, CHENG G, CAO S Y, et al. GB/T 10296-2008 Thermal insulation-determination of steady-state thermal transmission properties-pipe insulation apparatus[S]. Beijing: Standards Press of China, 2008.
[4] 纪玉超,张双喜,胡永开,等. 圆管法导热系数测量的实验研究[J]. 青岛理工大学学报,2009,30(3):56-59.
JI Y C, ZHANG S X, HU Y K, et al. Experimental investigations on thermal conductivity measurement by tube-form method[J]. Journal of Qingdao Technological University, 2009, 30(3):56-59.
[5] 戴自祝,金福锦,何振声,等. GB/T 8174-2008 设备及管道绝热效果的测试与评价[S]. 北京:中国标准出版社,2008.
DAI Z Z, JIN F J, HE Z S, et al. GB/T 8174-2008 Method of measuring and evaluation thermal insulation effects for equipment and pipes[S]. Beijing: Standards Press of China, 2008.
[6] 代伟,谢春茂. 导热系数实验装置研究[J]. 实验科学与技术, 2008,6(1):22-25.
DAI W, XIE C M. Study on thermal conductivity test installation[J]. Experiment Science and Technology, 2008, 6(1):22-25.
[1]许铁.中洛输油管道总传热系数测试与分析[J].油气储运,1999,18(8):11.[doi:10.6047/j.issn.1000-8241.1999.08.004]
Xu Tie.Calculation and Analysis on the Overall Heat-Transfer Coefficient of Zhongmu—Luoyang Oil Pipeline[J].Oil & Gas Storage and Transportation,1999,18(8):11.[doi:10.6047/j.issn.1000-8241.1999.08.004]
[2]吴明,孟庆海.金属油罐罐壁传热系数的数值解法[J].油气储运,2000,19(10):18.[doi:10.6047/j.issn.1000-8241.2000.10.006]
Wu Ming,Meng Qinghai.Numerical Value Solution Method of the Transfer Coefficient on the Metallic Oil Tank Wall,[J].Oil & Gas Storage and Transportation,2000,19(8):18.[doi:10.6047/j.issn.1000-8241.2000.10.006]
[3]檀家桐 罗晓武 吴永华 付军 敬加强.阿赛管道稳定运行的进站温度预测与评价[J].油气储运,2012,31(6):441.[doi:10.6047/j.issn.1000-8241.2012.06.009]
Tan Jiatong,Luo Xiaowu,Wu Yonghua,et al. Prediction and evaluation of inlet temperature for stable operation of Aershan-Saihantala Oil Pipeline[J].Oil & Gas Storage and Transportation,2012,31(8):441.[doi:10.6047/j.issn.1000-8241.2012.06.009]
[4]郭慧军 郝瑞梅 吴航 李大昌.长呼原油管道保温与不保温方案比选[J].油气储运,2013,32(6):682.[doi:10.6047/j.issn.1000-8241.2013.06.029]
Guo Huijun,Hao Ruimei,Wu Hang,et al. Comparison of insulation and non-insulation schemes for the Changqing-Hohehot Crude Oil Pipeline[J].Oil & Gas Storage and Transportation,2013,32(8):682.[doi:10.6047/j.issn.1000-8241.2013.06.029]
[5]安世居 杨强 白海洋 梁威 冯岩.柔性软管弯曲限制器的设计[J].油气储运,2016,35(预出版):1.
AN Shiju,YANG Qiang,BAI Haiyang,et al.Design of bend restrictor for flexible pipes[J].Oil & Gas Storage and Transportation,2016,35(8):1.
[6]安世居,杨强,白海洋,等.柔性软管弯曲限制器的设计[J].油气储运,2016,35(5):551.[doi:10.6047/j.issn.1000-8241.2016.05.020]
AN Shiju,YANG Qiang,BAI Haiyang,et al.Design of bend restrictor for flexible pipes[J].Oil & Gas Storage and Transportation,2016,35(8):551.[doi:10.6047/j.issn.1000-8241.2016.05.020]
收稿日期:2014-5-26;改回日期:2015-4-29。
基金项目:国家科技重大专项课题资助项目“保温输油软管关键技术研究”,2011ZX05026-005。
作者简介:孟德军,助理工程师,1987年生,2010年毕业于中国海洋大学工程学院船舶与海洋工程专业,现主要从事海洋挠性复合管道的设计和研发工作。Tel:18602667365, Email:jacksonmeng@sina.com