[Objective] Tidal interference can pose serious corrosion risks to pipelines, and it is crucial to clarify the distribution of pipelines affected by tidal interference and the laws governing their susceptibility to tidal interference for China’s oil and gas pipeline industry. [Methods] A 24-hour potential monitoring was conducted using the buried test piece method. Tidal interference patterns were analyzed through the waveform changes of the test piece, and frequency domain analysis of the potential monitoring data was performed using Fourier transform. The effects of various interference voltages, pipeline proximity to interference sources, soil resistivity, and other factors on tidal interference patterns were investigated through numerical simulation calculation. [Results] In China, pipelines affected by tidal interference are primarily concentrated in the eastern coastal region, specifically in Jiangsu, Fujian, Zhejiang, Liaoning, and Shandong. The main interference sources are oceans and large water bodies, with subway stray current interference typically superimposed on pipelines in areas experiencing tidal interference. This study found that the maximum distance at which an interference source can affect a pipeline through tidal interference was 55 km. Beyond 25 km, the fluctuation amplitude of the pipe-to-soil potential decreased significantly. [Conclusion] When the pipeline is affected by tides, the variation curve of pipe-to-soil potential closely follows the tiding trends of nearby large water bodies, exhibiting a “ double peaks and double valleys” fluctuation pattern with a period of approximately 12 hours and a frequency of 2.3×10−5 Hz. For a pipeline parallel to the coastline and affected by tides, the point nearest to the interference source experiences incoming stray current, while both ends farthest from such source experience outgoing stray current, and vice versa. As the pipeline moves away from the coastline, the intensity of tidal stray current on the pipeline decreases exponentially. The research results provide a theoretical basis and reference for assessing pipeline corrosion risk under tidal interference and for developing interference prevention strategies. (15 Figures, 1 Table, 24 References)
图9 去除地铁干扰频率后管道沿线管地电位分布图Fig. 9 Distribution of pipe-to-soil potential along the pipeline after removing subway interference frequencies
图 10 同一时间段管道沿线不同测试桩处24 h管地电位时程曲线Fig. 10 24-hour pipe-to-soil potential time-history curves at different test posts along the pipeline during the same time period
图 12 无潮汐杂散电流且有阴极保护时不同土壤电阻率下管道全线管地电位分布曲线Fig. 12 pipe-to-soil potential distribution curves along the entire pipeline with cathodic protection and without tidal stray currents, under various soil resistivities
图 14 与海岸不同间距管道受潮汐杂散电流干扰时的管地电位分布曲线Fig. 14 Distribution of pipe-to-soil potential when pipelines with different distances from the coast are disturbed by tidal stray currents
图 15 管道在不同土壤电阻率条件下受同等潮汐电压干扰时的管地电位分布曲线Fig. 15 Distribution of pipe-to-soil potential under different soil resistivity conditions when subjected to the same tidal voltage interference
[1] 朱祥剑,杜艳霞,覃慧敏,张熠,葛彩刚. 地铁杂散电流干扰下埋地管道管地电位动态波动规律[J]. 腐蚀与防护,2019,40(12):878-885. 10.11973/fsyfh-201912003. ZHU X J, DU Y X, QIN H M, ZHANG Y, GE C G. Dynamic fluctuation characteristics of pipe-to-soil potential on buried pipelines under interference of stray current from subway[J]. Corrosion & Protection, 2019, 40(12): 878-885.
[2] 李敏锋,吴广春,陈玉亮,赵万里,濮春明,张梦梦. 苏州地区管道受地铁杂散电流干扰的规律[J]. 腐蚀与防护,2023,44(8):83-88,116. 10.11973/fsyfh-202308015. LI M F, WU G C, CHEN Y L, ZHAO W L, PU C M, ZHANG M M. Metro stray current interference regularity of buried pipeline in Suzhou area[J]. Corrosion and Protection, 2023, 44(8):83-88, 116.
[3] 张梦梦,徐友鹏,胡贵斌,冯德佳,吴广春,杜雪麟,等. 管道地铁杂散电流干扰腐蚀风险评估与防护措施[J]. 腐蚀与防护,2023,44(6):82-89. 10.11973/fsyfh-202306013. ZHANG M M, XU Y P, HU G B, FENG D J, WU G C, DU X L, et al. Corrosin Risk Evaluation and Proteetion Measures of Pipeline Interfered by Metro Stray Current[J]. Corrosion & Protection, 2023, 44(6): 82-89.
[4] 陈乐,杜艳霞,梁毅. 高速铁路交流干扰下埋地管道交直流参数动态波动特征[J]. 腐蚀与防护,2023,44(5):69-77. 10.11973/fsyfh-202305013. CHEN L, DU Y X, LIANG Y. Dynamic fluctuation characteristics of AC and DC parameters of buried pipeline under AC interference from high-speed railway[J]. Corrosion & Protection, 2023, 44(5):69-77.
[5] 吴广春,李德明. 交流输电线路单相接地故障时埋地管道安全距离确定及其影响因素研究[J]. 材料保护,2022,55(增刊 1):27-33. 10.16577/j.issn.1001-1560.2022.1005. WU G C, LI D M. Research on the determination of safe distance of buried pipeline and its influencing factors in case of single-phase grounding fault of AC transmission line[J]. Materials Protection, 2022, 55(S1): 27-33.
[6] 闫茂成,石薇,王彬彬. 埋地阴极保护管线的交流干扰腐蚀[J].装备环境工程,2021,18(4):1-8. 10.7643/issn.1672-9242.2021.04.001. YAN M C, SHI W, WANG B B. Research on AC interference corrosion of buried pipeline with cathodic protection[J]. Equipment Environmental Engineering, 2021, 18(4): 1-8.
[7] 胡亚博,吴志平,吴世勤,倪少清,常景龙. 高压直流接地极对埋地管道腐蚀的影响和管控思考[J]. 油气储运,2021,40(3):256-262. 10.6047/j.issn.1000-8241.2021.03.003. HU Y B, WU Z P, WU S Q, NI S Q, CHANG J L. Influence of HVDC grounding electrode on corrosion of buried pipelines and thought on risk management and control[J]. Oil & Gas Storage and Transportation, 2021, 40(3): 256-262.
[8] 顾清林,姜永涛,曹国飞,葛彩钢,丁疆强,高荣钊,等. 高压直流接地极对埋地管道的干扰监测及影响规律[J]. 油气储运,2021,40(1):26-32. 10.6047/j.issn.1000-8241.2021.01.005. GU Q L, JIANG Y T, CAO G F, GE C G, DING J Q, GAO R Z, et al. Interference monitoring and influence rule of HVDC grounding electrode to buried pipelines[J]. Oil & Gas Storage and Transportation, 2021, 40(1): 26-32.
[9] 翟维枫,梁志珊,左信,毕武喜,蓝卫. 地磁暴引起的埋地管道管地电位“波节”和“纠缠”分布特征[J]. 石油学报,2020,41(8):1001-1010. 10.7623/syxb202008009. ZHAI W F, LIANG Z S, ZUO X, BI W X, LAN W. Distribution characteristics of wave joint and entanglement of pipe-to-soil potential on buried pipeline and induced by geomagnetic storm, 2020, 41(8): 1001-1010.
[10] 刘连光,张鹏飞,王开让,毕武喜,葛艾天. 地磁暴侵害油气管道的管地电位效应[J]. 电工技术学报,2016,31(9):68-74. 10.19595/j.cnki.1000-6753.tces.2016.09.009. LIU L G, ZHANG P F, WANG K R, BI W X, GE A T. PSP interference effect of geomagnetic storm on buried pipelines[J]. Transaction of China Electrotechnical Society, 2016, 31(9):68-74.
[11] 梁志珊,王鹏,胡黎花,张举丘. 埋地油气管道地磁感应电流(GIC)的混沌特性研究[J]. 物理学报,2014,63(17):96-104. 10.7498/aps.63.170505. LIANG Z S, WANG P, HU L H, ZHANG J Q. Chaotic characteristic study of GIC in buried steel oil pipeline[J]. Acta Phys. Sin., 2014, 63(17): 96-104.
[12] 张鹏飞,刘连光,马成廉. 油气管网与电网的地磁暴干扰机理比较研究[J]. 科学技术与工程,2015,15(25):48-54,87. 10. 3969/j.issn.1671-1815.2015.25.009. ZHNAG P F, LIU L G, MA C L. Comparison of geomagnetic storm interference in pipelines and power system[J]. Science Technology and Engineering, 2015, 15(25): 48-54, 87.
[13] 王军,吴昀,张响,杜艳霞,朱敏,李自力. 直流杂散电流对埋地管道腐蚀规律及干扰影响的研究进展[J]. 材料保护,2023,56(4):169-177,182. 10.16577/j.issn.1001-1560.2023.0098. WANG J, WU Y, ZHANG X, DU Y X, ZHU M, LI Z L. Research progresses on the corrosion law and interference effect of DC stray current on buried pipelines[J]. Materials Protection, 2023, 56(4): 169-177, 182.
[14] 吴广春,李德明,张梦梦. 交流电对X80钢腐蚀行为影响研究[J]. 表面技术,2022,51(6):307-316. 10.16490/j.cnki.issn.1001-3660.2022.06.029. WU G C, LI D M, ZHANG M M. Alternating current on corrosion behavior of X80 steel[J]. Surface Technology, 2022, 51(6):307-316.
[16] 吴长访,钟婷,冯永强,石胜明,闫茂成,刘文会,等. 脉冲阴极保护下剥离防腐层管道的极化行为[J]. 油气储运,2024,43(6):649-655. 10.6047/j.issn.1000-8241.2024.06.006. WU C F, ZHONG T, FENG Y Q, SHI S M, YAN M C, LIU W H, et al. Polarization behavior of pipelines with peeled anti-corrosive coating under pulsed current cathodic protection[J]. Oil & Gas Storage and Transportation, 2024, 43(6): 649-655.
[17] 赵耀峰.埋地油气管道GIC-PSP监测原理与装置研制[D].北京:中国石油大学(北京),2016. ZHAO Y F. T The GIC-PSP of buried oil and gas pipeline monitoring theory and device designed[D]. Beijing: China University of Petroleum (Beijing), 2016.
[18] 熊树海. 潮汐感应和地磁海岸效应对沿海埋地管线腐蚀机理的研究[D]. 中国石油大学(北京),2017. XIONG S H. Study on corrosion mechanism and algorithm of coastal pipeline by coastal effect and tide induction[D]. China University of Petroleum (Beijing), 2017 .
[19] 方莉. 管道管地电位(PSP)潮汐效应机理研究[D]. 中国石油大学(北京),2019. FANG L. Study on tidal effect mechanism of buried pipeline pipe-soil potential (PSP)[D]. Beijing: China University of Petroleum (Beijing), 2019
[21] 廖文举,杜翠薇,刘智勇,李晓刚. 管线钢在青岛滨海潮汐环境中的腐蚀行为[C]. 北京:2015第二届海洋材料与腐蚀防护大会,2015:14-18. LIAO W J, DU C W, LIU Z Y, LI X G. Corrosion behavior of X65 steel in Qingdao coastal tidal environment[C]. Beijing:Complete Collection of Papers at the Second 2015 Ocean Materials and Corrosion Protection Conference, 2015: 14-18.
[22] 谭大诚,王兰炜,赵家骝,席继楼,刘大鹏,于华,等. 潮汐地电场谐波和各向波形的影响要素[J]. 地球物理学报,2011,54(7):1842-1853. 10.3969/j.issn.0001-5733.2011.07.018. TAN D C, WANG L W, ZHAO J L, XI J L, LIU D P, YU H, et al. Influence factors of harmonic waves and directional waveforms of tidal geoelectrical field[J]. Chinese Journal of Geophysics, 2011, 54(7): 1842-1853.
[23] LONGUET-HIGGINS M S. The electrical and magnetic effects of tidal streams[J]. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 1949, 5(8): 285-307. DOI:10.1111/j.1365-246X.1949.tb02945.x.
[24] 谭大诚,赵家骝,席继楼,杜学彬,徐建明. 潮汐地电场特征及机理研究[J]. 地球物理学报,2010,53(3):544-555. 10.3969/j.issn.0001-5733.2010.03.008. TAN D C, ZHAO J L, XI J L, DU X B, XU J M. A study on feature and mechanism of the tidal geoelectrical field[J]. Chinese Journal of Geophysics, 2010, 53(3): 544-555.