[1]温泉,王宁,魏学华.基于MF-DFA与BorutaShap的天然气需求预测模型[J].油气储运,2025,44(01):109-119.[doi:10.6047/j.issn.1000-8241.2025.01.011]
 WEN Quan,WANG Ning,WEI Xuehua.Natural gas demand forecast model based on MF-DFA and BorutaShap[J].Oil & Gas Storage and Transportation,2025,44(01):109-119.[doi:10.6047/j.issn.1000-8241.2025.01.011]
点击复制

基于MF-DFA与BorutaShap的天然气需求预测模型

参考文献/References:

[1] 刘真,潘文菊,刘佳,温凯,宫敬. 基于K-means聚类+灰色理论+BP神经网络的区域天然气长期需求预测[J]. 油气储运,2024, 43(1):103?110. 10.6047/j.issn.1000-8241.2024.01.012. LIU Z, PAN W J, LIU J, WEN K, GONG j.A combined approach for forecasting regional long-term natural gas demand integrating K-means clustering, grey theory, and BP neural network[J]. Oil & Gas Storage and Transportation, 2024, 43(1): 103?110.
[2] 李洪兵,刘盈,唐紫涵,韩咪,罗雨,刘可. 基于灰色系统理论的中国天然气供需预测预警研究[J]. 天然气技术与经济,2024, 18(1):68?75. 10.3969/j.issn.2095-1132.2024.01.010. LI H B, LIU Y, TANG Z H, HAN M, LUO Y, LIU K. Predicting and early warning the natural-gas supply and demand in China based on grey theories[J]. Natural Gas Technology and Economy, 2024, 18(1): 68?75.
[3] 贺志明,袁灿,罗学渊,任雨涵,罗小利. 基于多重影响因素的天然气需求预测研究:以西南油气田分公司为例[J]. 西南石油大学学报(社会科学版),2023,25(6):1?12. HE Z M, YUAN C, LUO X Y, REN Y H, LUO X L. Natural gas demand prediction based on multiple influencing factors: an empirical analysis of the data of southwest oil and gas field company[J]. Journal of Southwest Petroleum University (Social Sciences Edition), 2023, 25(6): 1?12.
[4] 林文辉,杜彦炜,赵鹏. 改进GM(1,1)-ARIMA-LR模型天然气产量预测研究[J]. 西安工业大学学报,2024,44(1):32?40. 10.16185/j.jxatu.edu.cn.2024.01.201. LIN W H, DU Y W, ZHAO P. Improved GM(1,1)-ARIMA-LR model for natural gas production prediction[J]. Journal of Xi'an Technological University, 2024, 44(1): 32?40.
[5] LI H B, HAN M. Forecast of China’s natural gas demand based on the double-logarithmic model with stepwise regression method[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(3): 8491?8506. DOI: 10.1080/15567036.2023.2227584.
[6] CHEN Y, CHUA W S, KOCH T. Forecasting day-ahead high-resolution natural-gas demand and supply in Germany[J]. Applied Energy, 2018, 228: 1091?1110. DOI: 10.1016/j.apenergy.2018.06.137.
[7] SHAHBAZ M, LEAN H H, FAROOQ A. Natural gas consumption and economic growth in Pakistan[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 87?94. DOI: 10.1016/j.rser.2012.09.029.
[8] SHAHBAZ M, AROURI M, TEULON F. Short- and long-run relationships between natural gas consumption and economic growth: evidence from Pakistan[J]. Economic Modelling, 2014, 41:219?226. DOI: 10.1016/j.econmod.2014.05.019.
[9] HASSAN M S, TAHIR M N, WAJID A, MAHMOOD H, FAROOQ A. Natural gas consumption and economic growth in Pakistan: production function approach[J]. Global Business Review, 2018, 19(2): 297?310. DOI: 10.1177/0972150917713533.
[10] ARAS N. Forecasting residential consumption of natural gas using genetic algorithms[J]. Energy Exploration & Exploitation, 2008, 26(4): 241?266. DOI: 10.1260/014459808787548705.
[11] 佟敏,陈忠源,党乐,崔亚茹,马善为,李凯. 基于特征筛选BP神经网络的天然气需求量预测[J]. 天然气技术与经济,2022, 16(3):59?65. 10.3969/j.issn.2095-1132.2022.03.009. TONG M, CHEN Z Y, DANG L, CUI Y R, MA S W, LI K. Predicting the natural-gas demand based on feature selection and BP neural network[J]. Natural Gas Technology and Economy, 2022, 16(3): 59?65.
[12] 温泉,石小平,张利分,李蕾. 基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J]. 油气储运,2023,42(6):702?712. 10.6047/j.issn.1000-8241.2023.06.012. WEN Q, SHI X P, ZHANG L F, LI L. APSO-LSTM model based on improved tent mapping for natural gas demand forecasting[J]. Oil & Gas Storage and Transportation, 2023, 42(6): 702?712.
[13] 田文才,傅宗化,周国峰,乔伟彪. 基于WT+改进SSA-LSTM模型的短期天然气负荷预测算法[J]. 油气储运,2023,42(2):231?240. 10.6047/j.issn.1000-8241.2023.02.013. TIAN W C, FU Z H, ZHOU G F, QIAO W B. Short-term natural gas load forecast algorithm based on WT+improved SSA-LSTM model[J]. Oil & Gas Storage and Transportation, 2023, 42(2):231?240.
[14] 王可睿,邵必林. 基于Time2Vec-LSTM-TCN-Attention的天然气负荷组合预测[J/OL]. 南京信息工程大学学报:1?13[2024-05-01]. https://doi.org/10.13878/j.cnki.jnuist.20240104002. 10.13878/j.cnki.jnuist.20240104002. WANG K R, SHAO B L. Natural gas load combination forecast based on Time2Vec-LSTM-TCN-Attention[J/OL]. Journal of Nanjing University of Information Science & Technology: 1?13 [2024-05-01]. https://doi.org/10.13878/j.cnki.jnuist.20240104002.
[15] 颜珂,彭星煜,刘小琨,张昆,张瑜春,穆卫巍,等. 基于CEEMD-LSTM的短期天然气负荷预测模型[J]. 油气储运,2024,43(3):351?359. 10.6047/j.issn.1000-8241.2024.03.012. YAN K, PENG X Y, LIU X K, ZHANG K, ZHANG Y C, MU W W, et al. Short-term natural gas load forecasting model based on CEEMD-LSTM[J]. Oil & Gas Storage and Transportation, 2024, 43(3): 351?359.
[16] PENG C K, BULDYREV S V, HAVLIN S, SIMONS M,STANLEY H E, GOLDBERGER A L. Mosaic organization of DNA nucleotides[J]. Physical Review E, 1994, 49(2): 1685?1689. DOI: 10.1103/PhysRevE.49.1685.
[17] KANTELHARDT J W, ASHKENAZY Y, IVANOV P C, BUNDE A, HAVLIN S, PENZEL T, et al. Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments[J]. Physical Review E, 2002, 65(5): 051908. DOI: 10.1103/PhysRevE.65.051908.
[18] 韩瑞,吴达胜,方陆明,黄宇玲. 基于Boruta和极端随机树方法的森林蓄积量估测[J]. 林业资源管理,2020(4):127?133. 10.13466/j.cnki.lyzygl.2020.04.018. HAN R, WU D S, FANG L M, HUANG Y L. Estimation of forest reserves based on Boruta and extra-trees methods[J]. Forest Resources Management, 2020(4): 127?133.
[19] 李春泽,张超,张皓源,杨翠翠,李珊儿,郧文聚. 基于XGBoost与地理加权回归的吉林省西部土壤盐渍化反演[J]. 中国农业大学学报,2024,29(2): 1?10. 10.11841/j.issn.1007-4333. 2024.02.01. LI C Z, ZHANG C, ZHANG H Y, YANG C C, LI S E, YUN W j.Inversion of soil salinization in western Jilin Province based on XGBoost and Geographically Weighted Regression[J]. Journal of China Agricultural University, 2024, 29(2): 1?10.
[20] CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]. San Francisco: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785?794.
[21] HASHIM F A, HOUSSEIN E H, HUSSAIN K, MABROUK M S, AL-ATABANY W. Honey badger algorithm: new metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2022, 192: 84?110. DOI: 10.1016/j.matcom.2021.08.013.
[22] 徐碧阳,覃涛,魏巍,范圆成,杨靖. 基于多策略改进的蜜獾优化算法[J]. 小型微型计算机系统,2024,45(3):753?762. 10.20009/j.cnki.21-1106/TP.2022-0552. XU B Y, QIN T, WEI W, FAN Y C, YANG j.Improved honey badger optimization algorithm based on multi-strategies[J]. Journal of Chinese Computer Systems, 2024, 45(3): 753?762.
[23] AHMADIANFAR I, HEIDARI A A, GANDOMI A H, CHU X F,CHEN H L. RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method[J]. Expert Systems with Application, 2021, 181: 115079. DOI: 10.1016/j.eswa.2021.115079.
[24] ZHANG M, LONG D Y, WANG X, YU L Z, WU J W, LI D H, et al. Improved grey wolf algorithm based on nonlinear control parameter strategy[C]. Hangzhou: 2019 Chinese Automation Congress (CAC), 2019: 4651?4656.
[25] 郑婷婷,刘升,叶旭. 自适应t分布与动态边界策略改进的算术优化算法[J]. 计算机应用研究,2022,39(5):1410?1414. 10.19734/j.issn.1001-3695.2021.09.0428. ZHENG T T, LIU S, YE X. Arithmetic optimization algorithm based on adaptive t-distribution and improved dynamic boundary strategy[J]. Application Research of Computers, 2022, 39(5):1410?1414.
[26] 张严,秦亮曦. 基于Levy飞行策略的改进樽海鞘群算法[J]. 计算机科学,2020,47(7):154?160. 10.11896/jsjkx.190600068. ZHANG Y, QIN L X. Improved Salp swarm algorithm based on levy flight strategy[J]. Computer Science, 2020, 47(7): 154?160.
[27] 郭秋艳,何跃. 基于DFA方法和BP神经网络的GDP预测模型[J]. 统计与决策,2014,30(8):82?84. 10.13546/j.cnki.tjyjc.2014.08.030. GUO Q Y, HE Y. GDP prediction model based on DFA method and BP neural network[J]. Statistics and Decision, 2014, 30(8):82?84.

相似文献/References:

[1]殷建成,袁宗明,岑康.天然气需求自适应优化组合预测模型的改进[J].油气储运,2005,24(10):17.[doi:10.6047/j.issn.1000-8241.2005.10.005]
 YIN Jiancheng,YUAN Zongming.Improving for the Model of Demand Selfadaption Optimization[J].Oil & Gas Storage and Transportation,2005,24(01):17.[doi:10.6047/j.issn.1000-8241.2005.10.005]
[2]尹渊博,李玉星,杨文,等.成品油管道泄漏次声波监测及信号处理方法[J].油气储运,2024,43(07):1.
 YIN Yuanbo,LI Yuxing,YANG Wen,et al.Study on infrasonic leakage monitoring technology of refined oil pipeline based on WT-RF[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[3]杨阳,李成志,杜选,等.基于KNN和随机森林算法的腐蚀泄漏风险软检测模型[J].油气储运,2024,43(08):1.
 YANG Yang,LI Chengzhi,DU Xuan,et al.Soft detection model of corrosion leakage based on KNN and random forest algorithm[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[4]尹渊博,李玉星,杨文,等.成品油管道泄漏次声波监测及信号处理方法[J].油气储运,2024,43(08):905.[doi:10.6047/j.issn.1000-8241.2024.08.007]
 YIN Yuanbo,LI Yuxing,YANG Wen,et al.Study on infrasonic leakage monitoring and signal processing for product oil pipeline[J].Oil & Gas Storage and Transportation,2024,43(01):905.[doi:10.6047/j.issn.1000-8241.2024.08.007]
[5]杨阳,李成志,杜选,等.基于KNN和随机森林算法的腐蚀泄漏风险软检测模型[J].油气储运,2024,43(09):1064.[doi:10.6047/j.issn.1000-8241.2024.09.012]
 YANG Yang,LI Chengzhi,DU Xuan,et al.Soft detection model of corrosion leakage risk based on KNN and random forest algorithms[J].Oil & Gas Storage and Transportation,2024,43(01):1064.[doi:10.6047/j.issn.1000-8241.2024.09.012]
[6]温泉,王宁,魏学华.基于MF-DFA与BorutaShap的天然气需求预测模型[J].油气储运,2024,43(10):1.
 WEN Quan,WANG Ning,WEI Xuehua.Natural gas demand forecast model based on MF-DFA and BorutaShap[J].Oil & Gas Storage and Transportation,2024,43(01):1.

备注/Memo

温泉,男,1984年生,高级工程师,2014年博士毕业于武汉理工大学能源与动力学院,现主要从事交通运输规划、油气储运方向的研究工作。地址:湖北省武汉市东湖新技术开发区光谷大道117号,430205。电话:13986129307。Email:58071899@qq.com
基金项目:湖北能源集团科技攻关项目“湖北能源气化长江工程战略布局规划研究”,EN0T-ZX-F2018-100。
● Received: 2024-05-09● Revised: 2024-07-16● Online: 2024-08-15

更新日期/Last Update: 2025-01-25