[1]张超越,李鸿英,王禹,等.原油电场改性降黏率与能量密度的关系及其机理[J].油气储运,2025,44(01):69-77.[doi:10.6047/j.issn.1000-8241.2025.01.007]
 ZHANG Chaoyue,LI Hongying,WANG Yu,et al.Study on the relationship between viscosity reduction and energy density in electric treatment of crude oil and related mechanisms[J].Oil & Gas Storage and Transportation,2025,44(01):69-77.[doi:10.6047/j.issn.1000-8241.2025.01.007]
点击复制

原油电场改性降黏率与能量密度的关系及其机理

参考文献/References:

[1] 黄维和,宫敬,王军. 碳中和愿景下油气储运学科的任务[J]. 油气储运,2022,41(6):607?613. 10.6047/j.issn.1000-8241.2022. 06.002. HUANG W H, GONG J, WANG j.Tasks of oil & gas storage and transportation discipline under the vision of carbon neutrality[J]. Oil & Gas Storage and Transportation, 2022, 41(6): 607?613.
[2] 张劲军,李鸿英,黄骞,谢意蔚,陈朝辉,马晨波,等. 原油电场改性技术研究进展[J]. 油气储运,2021,40(11):1201?1209. 10.6047/j.issn.1000-8241.2021.11.001. ZHANG J J, LI H Y, HUANG Q, XIE Y W, CHEN C H, MA C B, et al. Progress of research on electric field treatment technology for modification of crude oil[J]. Oil & Gas Storage and Transportation, 2021, 40(11): 1201?1209.
[3] YAO B, LI C X, YANG F, SUN G Y, XIA X, ASHMAWY A M, et al. Advances in and perspectives on strategies for improving the flowability of waxy oils[J]. Energy & Fuels, 2022, 36(15):7987?8025. DOI: 10.1021/acs.energyfuels.2c01295.
[4] IBRAHIM R I, OUDAH M K, AL-MUFTI A M. An innovative graphene-supercapacitor for the treatment of crude oil viscosity at low temperatures[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109829. DOI: 10.1016/j.petrol.2021.109829.
[5] JAIN A, SETH J R, JUVEKAR V A, VERMA N, PANDEY N. Remarkable decrease in the viscosity of waxy crude oil under an electric field[J]. Soft Matter, 2020, 16(47): 10657?10666. DOI: 10. 1039/d0sm01404d.
[6] IBRAHIM R I, OUDAH M K, HASSAN A F. Viscosity reduction for flowability enhancement in Iraqi crude oil pipelines using novel capacitor and locally prepared nanosilica[J]. Journal of Petroleum Science and Engineering, 2017, 156: 356?365. DOI: 10.1016/j.petrol.2017.05.028.
[7] MA C B, LU Y D, CHEN C H, FENG K, LI Z X, WANG X Y, et al. Electrical treatment of waxy crude oil to improve its cold flowability[J]. Industrial & Engineering Chemistry Research, 2017, 56(38): 10920?10928. DOI: 10.1021/acs.iecr.7b02140.
[8] TAO R. Application of electrorheology to improve crude oil flowing properties through pipeline[M]. ROMERO-ZER?N L. Chemical enhanced oil recovery (cEOR)-a practical overview. London: InTech, 2016: 171?191.
[9] TAO R, GU G Q. Suppressing turbulence and enhancing liquid suspension flow in pipelines with electrorheology[J]. Physical Review E, 2015, 91(1): 012304. DOI: 10.1103/PhysRevE.91.012304.
[10] TAO R. Electrorheology for efficient energy production and conservation[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(15): 1667?1671. DOI: 10.1177/1045389X 11423428.
[11] TAO R, XU X. Reducing the viscosity of crude oil by pulsed electric or magnetic field[J]. Energy & Fuels, 2006, 20(5):2046?2051. DOI: 10.1021/ef060072x.
[12] TAO R, TANG H. Reducing viscosity of paraffin base crude oil with electric field for oil production and transportation[J]. Fuel, 2014, 118: 69?72. DOI: 10.1016/j.fuel.2013.10.056.
[13] 李鸿英,黄骞,陈朝辉,谢意蔚,苏杨,张超越,等. 原油电场改性机理研究进展与展望[J]. 油气储运,2022,41(11):1250?1259. 10.6047/j.issn.1000-8241.2022.11.002. LI H Y, HUANG Q, CHEN C H, XIE Y W, SU Y, ZHANG C Y, et al. Advance in investigation on mechanism of electric field treatment for improving the cold flowability of crude oil and its prospect[J]. Oil & Gas Storage and Transportation, 2022, 41(11):1250?1259.
[14] XIE Y W, LI H Y, ZHANG C Y, SU Y, HUANG Q, JIANG F, et al. A further investigation to mechanism of the electrorheological effect of waxy oils: behaviors of charged particles under electric field[J]. Petroleum Science, 2023, 20(2): 1247?1254. DOI: 10. 1016/j.petsci.2022.08.022.
[15] CHEN C H, ZHANG J J, XIE Y W, HUANG Q, DING Y F, ZHUANG Y, et al. An investigation to the mechanism of the electrorheological behaviors of waxy oils[J]. Chemical Engineering Science, 2021, 239: 116646. DOI: 10.1016/j.ces.2021.116646.
[16] LI H Y, WANG X Y, MA C B, LU Y D, HAN S P, CHEN C H, et al. Effect of electrical treatment on structural behaviors of gelled waxy crude oil[J]. Fuel, 2019, 253: 647?661. DOI: 10.1016/j.fuel. 2019.05.001.
[17] ZHANG C Y, ZHANG J J, KANG J B, XIE Y W, HAN S P, LI H Y. Electrorheological effects of waxy crude oils under high-voltage AC electric field[J]. Fuel, 2023, 340: 127494. DOI: 10. 1016/j.fuel.2023.127494.
[18] HUANG Q, LI H Y, XIE Y W, DING Y F, ZHUANG Y, CHEN C H, et al. Electrorheological behaviors of waxy crude oil gel[J]. Journal of Rheology, 2021, 65(2): 103?112. DOI: 10.1122/8. 0000160.
[19] MA C B, ZHANG J J, FENG K, LI Z X, CHEN C H, HUANG Q,et al. Influence of asphaltenes on the performance of electrical treatment of waxy oils[J]. Journal of Petroleum Science and Engineering, 2019, 180: 31?40. DOI: 10.1016/j.petrol.2019.05.020.
[20] ZHANG C Y, LI H Y, WANG Y, XIE Y W, KANG J B, SU Y, et al. An energy perspective on the mechanism of crude oil electrorheological effect[J]. Physics of Fluids, 2024, 36(4):043101. DOI: 10.1063/5.0202010.
[21] 李鸿英,黄骞,周希骥,谢意蔚,张超越,陈朝辉,等. 原油组成对电场改性效果的影响[J]. 油气储运,2022,41(10):1189?1194. 10.6047/j.issn.1000-8241.2022.10.009. LI H Y, HUANG Q, ZHOU X J, XIE Y W, ZHANG C Y, CHEN C H, et al. Influence of oil composition on the cold flowability improvement of electric field treatment[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1189?1194.
[22] TAO R, DU E, TANG H, XU X. Neutron scattering studies of crude oil viscosity reduction with electric field[J]. Fuel, 2014, 134:493?498. DOI: 10.1016/j.fuel.2014.06.018.
[23] CHEN J, ZHANG J J, LI H Y. Determining the wax content of crude oils by using differential scanning calorimetry[J]. Thermochimica Acta, 2004, 410(1/2): 23?26. DOI: 10.1016/S0040-6031(03)00367-8.

相似文献/References:

[1]张冬敏,姜保良,张立新,等.复合纳米材料对含蜡原油析蜡特性的影响[J].油气储运,2011,30(04):249.[doi:10.6047/j.issn.1000-8241.2011.04.002]
 Zhang Dongmin,Jiang Baoliang,Zhang Lixin,et al.The influence of composite nanometer-sized material on wax deposit property of waxy crude oil[J].Oil & Gas Storage and Transportation,2011,30(01):249.[doi:10.6047/j.issn.1000-8241.2011.04.002]
[2]代晓东,贾子麒,孙伶,等.利用RC1e反应量热仪研究含蜡原油热处理机理[J].油气储运,2011,30(05):359.[doi:10.6047/j.issn.1000-8241.2011.05.011]
 Dai Xiaodong,Jia Ziqi,Sun Ling,et al.Mettler Toledo RC1e to research the heat treatment mechanics of waxy crude oil[J].Oil & Gas Storage and Transportation,2011,30(01):359.[doi:10.6047/j.issn.1000-8241.2011.05.011]
[3]李其抚,苗青,高新楼,等.用滞回曲线法表征含蜡原油的触变过程[J].油气储运,2011,30(10):761.[doi:10.6047/j.issn.1000-8241.2011.10.013]
 Li Qifu,Miao Qing,Gao Xinlou,et al.Characterize the thixotropic process of waxy crude oil with hysteresis curve method[J].Oil & Gas Storage and Transportation,2011,30(01):761.[doi:10.6047/j.issn.1000-8241.2011.10.013]
[4]贾邦龙 张劲军.含蜡原油触变性测试方法[J].油气储运,2012,31(4):254.[doi:10.6047/j.issn.1000-8241.2012.04.004]
 Jia Banglong and Zhang Jinjun.Thixotropy test method of waxy crude oil[J].Oil & Gas Storage and Transportation,2012,31(01):254.[doi:10.6047/j.issn.1000-8241.2012.04.004]
[5]张天娇 李汉勇 宫敬 段纪淼.油气水三相流体高温高压流变特性实验[J].油气储运,2012,31(5):352.[doi:10.6047/j.issn.1000-8241.2012.05.008]
 Zhang Tianjiao,Li Hanyong,Gong Jing,et al.Experiment of high-temperature and high-pressure rheological characteristics of oil-gas-water fluid[J].Oil & Gas Storage and Transportation,2012,31(01):352.[doi:10.6047/j.issn.1000-8241.2012.05.008]
[6]张冬敏,阳明书,姜保良,等.纳米技术在含蜡原油管道输送中的应用[J].油气储运,2010,29(7):487.[doi:10.6047/j.issn.1000-8241.2010.07.002]
 Zhang Dongmin,Yang Mingshu,Jiang Baoliang.Application of Nanotechnology in Waxy Oil Pipeline Transportation[J].Oil & Gas Storage and Transportation,2010,29(01):487.[doi:10.6047/j.issn.1000-8241.2010.07.002]
[7]李汉勇,宫敬,高鹏举,等.含蜡原油溶蜡点和析蜡点测定方法的比较[J].油气储运,2010,29(10):752.[doi:10.6047/j.issn.1000-8241.2010.10.008]
 Li Hanyong,Gong Jing,Gao Pengju.Comparison of Determination Method for Wax Melting Point and Wax Precipitation Point of Waxy Crude Oil[J].Oil & Gas Storage and Transportation,2010,29(01):752.[doi:10.6047/j.issn.1000-8241.2010.10.008]
[8]李汉勇,宫敬,雷俊勇,等.压力对含水原油析蜡过程的影响[J].油气储运,2010,29(7):494.[doi:10.6047/j.issn.1000-8241.2010.07.005]
 Li Hanyong,Gong Jing,Lei Junyong.Influence of Pressure on Wax Deposition Course of Wet Oil[J].Oil & Gas Storage and Transportation,2010,29(01):494.[doi:10.6047/j.issn.1000-8241.2010.07.005]
[9]饶心,张国忠,胡月,等.人工神经网络预测含蜡原油的屈服应力[J].油气储运,2009,28(11):17.[doi:10.6047/j.issn.1000-8241.2009.11.003]
 RAO Xin,ZHANG Guozhong.Artificial Neural Network Model to Predict Yield Stress of Waxy Crude Oil[J].Oil & Gas Storage and Transportation,2009,28(01):17.[doi:10.6047/j.issn.1000-8241.2009.11.003]
[10]崔秀国,张立新,姜保良,等.热油管道停输再启动特性的环道模拟试验研究[J].油气储运,2009,28(1):27.[doi:10.6047/j.issn.1000-8241.2009.01.008]
 CUI Xiuguo,ZHANG Lixin.Simulation Research on Shutdown and Restart Process of Hot Oil Pipeline by Large-scale Test Loop[J].Oil & Gas Storage and Transportation,2009,28(01):27.[doi:10.6047/j.issn.1000-8241.2009.01.008]
[11]李鸿英,黄骞,周希骥,等.原油组成对电场改性效果的影响[J].油气储运,2022,41(10):1189.[doi:10.6047/j.issn.1000-8241.2022.10.009]
 LI Hongying,HUANG Qian,ZHOU Xiji,et al.Influence of oil composition on the cold flowability improvement of electric field treatment[J].Oil & Gas Storage and Transportation,2022,41(01):1189.[doi:10.6047/j.issn.1000-8241.2022.10.009]
[12]李鸿英,黄骞,陈朝辉,等.原油电场改性机理研究进展与展望[J].油气储运,2022,41(11):1250.[doi:10.6047/j.issn.1000-8241.2022.11.002]
 LI Hongying,HUANG Qian,CHEN Chaohui,et al.Advance in investigation on mechanism of electric field treatment for improving the cold flowability of crude oil and its prospect[J].Oil & Gas Storage and Transportation,2022,41(01):1250.[doi:10.6047/j.issn.1000-8241.2022.11.002]
[13]张超越 李鸿英 王禹 李其兵 康家宝 兰欣 谢意蔚 张劲军.原油电场改性降黏率与能量密度的关系及其机理[J].油气储运,2025,44(01):1.
 ZHANG Chaoyue,LI Hongying,WANG Yu,et al.Research on the relation between viscosity reduction and energy density in electric treatment of crude of and its mechanism[J].Oil & Gas Storage and Transportation,2025,44(01):1.

备注/Memo

张超越,男,1996年生,在读博士生,2019年毕业于辽宁石油化工大学油气储运工程专业,现主要从事原油流变学及应用方向的研究工作。地址:北京市昌平区府学路18号,102249。电话:18741390417。Email:zchaoyue1996@163.com
通信作者:张劲军,男,1962年生,教授,博士生导师,1998年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事油气长距离管道输送技术以及油气储运安全工程方向的研究工作。地址:北京市昌平区府学路18号,102249。电话:010-89734627。Email:zhangjj@cup.edu.cn
基金项目:国家自然科学基金面上项目“含蜡原油电场改性机理研究”,52174066。
● Received: 2024-04-25● Revised: 2024-06-06● Online: 2024-10-16

更新日期/Last Update: 2025-01-25