[1]朱文卫,许成昊,王兴华,等.基于土壤离子化的雷击输电线对管道干扰风险评估[J].油气储运,2025,44(01):59-68.[doi:10.6047/j.issn.1000-8241.2025.01.006]
 ZHU Wenwei,XU Chenghao,WANG Xinghua,et al.Risk assessment of electromagnetic interference to buried pipelines from lightning strikes on transmission lines based on soil ionization[J].Oil & Gas Storage and Transportation,2025,44(01):59-68.[doi:10.6047/j.issn.1000-8241.2025.01.006]
点击复制

基于土壤离子化的雷击输电线对管道干扰风险评估

参考文献/References:

[1] 寇晓适,李纯,李元杰,文习山,鲁海亮,张科,等. 雷击输电杆塔时埋地管道感应电压的影响因素及防护措施[J]. 电瓷避雷器,2022(4):99?105. 10.16188/j.isa.1003-8337.2022.04.013. KOU X S, LI C, LI Y J, WEN X S, LU H L, ZHANG K, et al. Influencing factors and protective measures of induced voltage of buried pipeline when lightning strikes transmission tower[J]. Insulators and Surge Arresters, 2022(4): 99?105.
[2] 施城钧. 关于 ±800 kV直流输电线路雷击电磁暂态分析与故障识别[J]. 华东科技(综合),2018(11):268. SHI C j.Electromagnetic transient analysis and fault identification of lightning strikes on ±800 kV HVDC transmission lines[J]. East China Science & Technology (General), 2018(11): 268.
[3] HU S M, HU Y C, WANG J, AN Y Z, LIU G, LIU Z X, et al. Research on lightning overvoltage of Oil-Gas pipeline caused by lightning strikes on adjacent electrical transmission line[J]. Frontiers in Energy Research, 2022, 10: 830638. DOI: 10.3389/fenrg.2022.830638.
[4] MAHMOUDIAN A, NIASATI M, KARAM F. A comprehensive review: evaluation of AC induced voltage on buried pipeline near overhead transmission lines and mitigation techniques comparison[J]. International Journal of Electrical Engineering and Applied Sciences, 2020, 3(1): 53?59.
[5] 王建,廖兴万,林明建,邓冶强,吴强,李木子,等. 山区输油站供电线路差异化防雷改造方案[J]. 油气储运,2022,41(7):869?874. 10.6047/j.issn.1000-8241.2022.07.016. WANG J, LIAO X W, LIN M J, DENG Y Q, WU Q, LI M Z, et al. Transformation plan for differentiated lightning protection of power supply lines in a mountainous oil transmission station[J]. Oil & Gas Storage and Transportation, 2022, 41(7): 869?874.
[6] KOPSIDAS K, COTTON I. Induced voltages on long aerial and buried pipelines due to transmission line transients[J]. IEEE Transactions on Power Delivery, 2008, 23(3): 1535?1543. DOI: 10. 1109/TPWRD.2007.916234.
[7] POPOLI A, PIEROTTI G, RAGAZZI F, SANDROLINI L,CRISTOFOLINI A. FLARE: a framework for the finite element simulation of electromagnetic interference on buried metallic pipelines[J]. Applied Sciences, 2023, 13(10): 6268. DOI: 10.3390/app13106268.
[8] QI L, YUAN H, WU Y, CUI X. Calculation of overvoltage on nearby underground metal pipeline due to the lightning strike on UHV AC transmission line tower[J]. Electric Power Systems Research, 2013, 94: 54?63. DOI: 10.1016/j.epsr.2012.06.011.
[9] MARTINS-BRITTO A G, MORAES C M, LOPES F V. Transient electromagnetic interferences between a power line and a pipeline due to a lightning discharge: an EMTP-based approach[J]. Electric Power Systems Research, 2021, 197: 107321. DOI: 10.1016/j.epsr. 2021.107321.
[10] FAKHRAEI M, MAHMOUDIAN M, MANUEL GODINHO RODRIGUES E. Grounding system modeling and evaluation using integrated circuit based fast relaxed vector fitting approach, considering soil ionization[J]. Applied Sciences, 2020, 10(16):5632. DOI: 10.3390/app10165632.
[11] MURESAN A, PAPADOPOULOS T A, CZUMBIL L, CHRYSOCHOS A I, FARKAS T, CHIORAN D. Numerical modeling assessment of electromagnetic interference between power lines and metallic pipelines: a case study[C]. Cluj-Napoca:2021 9th International Conference on Modern Power Systems (MPS), 2021: 1?6.
[12] BRISSON E, BLAHAK U, LUCAS-PICHER P, PURR C, AHRENS B. Contrasting lightning projection using the lightning potential index adapted in a convection-permitting regional climate model[J]. Climate Dynamics, 2021, 57(7): 2037?2051. DOI: 10.1007/s00382-021-05791-z.
[13] ABDULLAH N. HVAC interference assessment on a buried gas pipeline[J]. IOP Conference Series: Earth and Environmental Science, 2021, 704(1): 012009. DOI: 10.1088/1755-1315/704/1/012009.
[14] RABBANI M, OO A M T. Electromagnetic effect of lightning return stroke to buried energy pipelines[J]. Energy Procedia, 2019, 160: 467?474. DOI: 10.1016/j.egypro.2019.02.194.
[15] COTA F, CORR?A A, VIANA ?, VISACRO S. Modeling soil ionization effect based on experimental data[J]. Electric Power Systems Research, 2022, 213: 108762. DOI: 10.1016/j.epsr.2022. 108762.
[16] 陈玉亮,沈佳园,张响,李德明. 输电线路雷击对临近管道产生的电磁干扰[J]. 腐蚀与防护,2023,44(5):57?64. 10.11973/fsyfh-202305011. CHEN Y L, SHEN J Y, ZHANG X, LI D M. Electromagnetic influence caused by lightning strikes on transmission lines to adjacent pipelines[J]. Corrosion and Protection, 2023, 44(5):57?64.
[17] LUCCA G. Two steps numerical method for calculating the AC interference from a faulty power line on nearby buried pipelines[J]. European Transactions on Electrical Power, 2011, 21(7): 2037?2052. DOI: 10.1002/etep.557.
[18] CHARALAMBOUS C A, DEMETRIOU A, LAZARI A L, NIKOLAIDIS A I. Effects of electromagnetic interference on underground pipelines caused by the operation of high voltage AC traction systems: the impact of harmonics[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 2664?2672. DOI: 10.1109/TPWRD.2018.2803080.
[19] TOMIOKA T, SATO Y, HAYASHI S, YOSHIDA S, IWASHITA T. Advantage of bulk lightning models for predicting lightning frequency over Japan[J]. Progress in Earth and Planetary Science, 2023, 10(1): 60. DOI: 10.1186/s40645-023-00592-w.
[20] ABDEL-GAWAD N M K, SHAALAN E M, DARWISH M M F, BASUNY M A M. Influence of fault locations on the pipeline induced voltages near to power transmission lines[C]. Cairo:2019 21st International Middle East Power Systems Conference (MEPCON), 2019:761?767.
[21] SAFAR J G, SHARIATINASAB R, HE J L. Comprehensive modeling of grounding electrodes buried in ionized Soil based on MoM-HBM approach[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1390?1398. DOI: 10.1109/TPWRD.2019.2943909.
[22] 陈玉亮,吴广春,李德明,张梦梦,王修云. 雷击高压输电线路对临近埋地油气管道电磁干扰的案例分析[J]. 腐蚀与防护,2023,44(11):93?100. 10.11973/fsyfh-202311017. CHEN Y L, WU G C, LI D M, ZHANG M M, WANG X Y. Case analysis of electromagnetic interference of lightning strikes on high-voltage AC transmission lines on adjacent buried oil & gas pipelines[J]. Corrosion and Protection, 2023, 44(11): 93?100.
[23] 李国庆,黄金龙,杜巍,赵静宜. 高压直流输电线路对地埋管道的电磁影响限值分析[J]. 吉林电力,2018,46(2):5?8. 10.3969/j.issn.1009-5306.2018.02.002. LI G Q, HUANG J L, DU W, ZHAO J Y. Analysis of the electromagnetic effect limit of HVDC transmission line to buried pipeline[J]. Jilin Electric Power, 2018, 46(2): 5?8.
[24] 蔡亮. 中国和加拿大管道与输电线路安全标准差异分析[J].全面腐蚀控制,2020,34(4):1?4. 10.13726/j.cnki.11-2706/tq.2020.04.001.04. CAI L. The difference analysis on safety standard for pipeline and power line between China and Canada[J]. Total Corrosion Control, 2020, 34(4): 1?4.
[25] CAKIL T, CARLAK H F, OZEN S. The analysis of transient phenomena on power transmission lines due to lightning electro-magnetic pulses[C]. St. Petersburg: 2017 Progress in Electro magnetics Research Symposium-Spring (PIERS), 2017: 3000?3005.
[26] 刘乐,胡元潮,李勋,姜志鹏,安韵竹,吕启深. 电力杆塔接地对邻近油气管道的影响[J]. 油气储运,2021,40(6):708?714. 10.6047/j.issn.1000-8241.2021.06.015. LIU L, HU Y C, LI X, JIANG Z P, AN Y Z, LYU Q S. Influence of power tower grounding on adjacent oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2021, 40(6): 708?714.

相似文献/References:

[1]周祥.埋地钢质管道外涂层缺陷的安全质量分级评价[J].油气储运,2011,30(04):299.[doi:10.6047/j.issn.1000-8241.2011.04.017]
 Zhou Xiang.Safety quality grading evaluation on the external coating defects of buried steel pipeline[J].Oil & Gas Storage and Transportation,2011,30(01):299.[doi:10.6047/j.issn.1000-8241.2011.04.017]
[2]付吉强,吴明,杜明俊,等.埋地管道周围土壤湿热耦合相变过程的数值计算[J].油气储运,2011,30(01):30.[doi:10.6047/j.issn.1000-8241.2011.01.008]
 Fu Jiqiang,Wu Ming,Du Mingjun,et al.Numerical calculation on heat-moisture coupling and phase change process of the soil around buried pipeline[J].Oil & Gas Storage and Transportation,2011,30(01):30.[doi:10.6047/j.issn.1000-8241.2011.01.008]
[3]陈杨,王为民,陈伟聪,等.基于故障树与模糊理论的埋地管道风险评价[J].油气储运,2011,30(07):481.[doi:10.6047/j.issn.1000-8241.2011.07.001]
 Chen Yang,Wang Weimin,Chen Weicong,et al.Risk assessment of the buried pipeline based on the fault tree and fuzzy theory[J].Oil & Gas Storage and Transportation,2011,30(01):481.[doi:10.6047/j.issn.1000-8241.2011.07.001]
[4]胡士信,陆家榆,张本革,等.邻近强电线路管道交流干扰参数的测试方法[J].油气储运,2011,30(03):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
 Hu Shixin,Lu Jiayu,Zhang Benge,et al.Test method of AC interference parameters for pipeline adjacent power transmission lines[J].Oil & Gas Storage and Transportation,2011,30(01):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
[5]李朝阳,马贵阳,刘亮.埋地输油管道泄漏油品扩散模拟[J].油气储运,2011,30(09):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
 Li Zhaoyang,Ma Guiyang,Liu Liang,et al.Diffusion simulation on leaked oil for buried pipelines[J].Oil & Gas Storage and Transportation,2011,30(01):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
[6]王鸿膺,蒋涛,秦晓霞,等.川气东送管道土壤腐蚀埋片试验[J].油气储运,2010,29(10):769.[doi:10.6047/j.issn.1000-8241.2010.10.013]
 Wang Hongying,Jiang Tao,Qin Xiaoxia.Field Coupon Testing on the Soil Corrosivity of Sichuan-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2010,29(01):769.[doi:10.6047/j.issn.1000-8241.2010.10.013]
[7]薛致远,张丰,毕武喜,等.东北管网阴极保护通电/断电电位测量与分析[J].油气储运,2010,29(10):772.[doi:10.6047/j.issn.1000-8241.2010.10.014]
 Xue Zhiyuan,Zhang Feng,Bi Wuxi.The Measurement and Analysis of On/Off-potential in Northeast Oil Pipeline Networks[J].Oil & Gas Storage and Transportation,2010,29(01):772.[doi:10.6047/j.issn.1000-8241.2010.10.014]
[8]刘仕鳌 蒲红宇 刘书文 蒋洪.埋地管道应力分析方法[J].油气储运,2012,31(4):274.[doi:10.6047/j.issn.1000-8241.2012.04.009]
 Liu Shiao,Pu Hongyu,Liu Shuwen,et al.Stress analysis method of buried pipeline[J].Oil & Gas Storage and Transportation,2012,31(01):274.[doi:10.6047/j.issn.1000-8241.2012.04.009]
[9]吴峰,李向阳,张治军.埋地参数对管道同沟敷设传热的影响[J].油气储运,2010,29(11):835.[doi:10.6047/j.issn.1000-8241.2010.11.009]
 Wu Feng,Li Xiangyang,Zhang Zhijun.Influence of Buried Parameters for Heat Transfer of Pipelines Laid in One Ditch[J].Oil & Gas Storage and Transportation,2010,29(01):835.[doi:10.6047/j.issn.1000-8241.2010.11.009]
[10]赵雄,周卫军,郭瑞.SPAE评价法在管道防腐层性能评价中的应用[J].油气储运,2009,28(11):54.[doi:10.6047/j.issn.1000-8241.2009.11.015]
 ZHAO Xiong,ZHOU Weijun.Application of SPAE Method in Coating Performance Evaluation of Pipelines[J].Oil & Gas Storage and Transportation,2009,28(01):54.[doi:10.6047/j.issn.1000-8241.2009.11.015]
[11]朱文卫,许成昊,王兴华,等.基于土壤离子化的雷击输电线对管道干扰风险评估[J].油气储运,2025,44(02):1.
 ZHU Wenwei,XU Chenghao,WANG Xinghua,et al.Risk assessment of electromagnetic interference to buried pipelines from lightning strikes on transmission lines based on soil ionization[J].Oil & Gas Storage and Transportation,2025,44(01):1.

备注/Memo

朱文卫,男,1985年生,高级工程师,2008年硕士毕业于西安交通大学电气工程及其自动化专业,现主要从事输电线路专业方向的研究工作。地址:广东省广州市海珠区琶洲街道琶洲大道55号,510330。电话:15876531968。Email:735228815@qq.com
基金项目:广东电网科技项目“交流输电线路对油气管道的影响及其规律、标准化防护方案及效果评价研究”,GDKJXM20220860。
● Received: 2024-03-11● Revised: 2024-04-03● Online: 2024-10-14

更新日期/Last Update: 2025-01-25