[1]陈兵,付子言,徐梦林,等.玻璃纤维复合材料结构对CO2管道外部止裂性能的影响[J].油气储运,2025,44(01):26-36.[doi:10.6047/j.issn.1000-8241.2025.01.003]
 CHEN Bing,FU Ziyan,XU Menglin,et al.Effect of glass fiber composite structure on external crack arrest performance of CO2 pipeline[J].Oil & Gas Storage and Transportation,2025,44(01):26-36.[doi:10.6047/j.issn.1000-8241.2025.01.003]
点击复制

玻璃纤维复合材料结构对CO2管道外部止裂性能的影响

参考文献/References:

[1] 胡其会,李玉星,张建,俞欣然,王辉,王武昌,等. “双碳”战略下中国CCUS技术现状及发展建议[J]. 油气储运,2022,41(4):361?371. 10.6047/j.issn.1000-8241.2022.04.001. HU Q H, LI Y X, ZHANG J, YU X R, WANG H, WANG W C, et al. Current status and development suggestions of CCUS technology in China under the “Double Carbon” strategy[J]. Oil &Gas Storage and Transportation, 2022, 41(4): 361?371.
[2] JIANG K, ASHWORTH P, ZHANG S Y, LIANG X, SUN Y, ANGUS D. China’s carbon capture, utilization and storage (CCUS) policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109601. DOI: 10.1016/j.rser.2019.109601.
[3] 陈兵,郭焕焕,崔维刚,肖红亮. 含杂质CO2管道泄漏扩散模拟分析[J]. 石油与天然气化工,2019,48(3):104?109. 10.3969/j.issn.1007-3426.2019.03.019.CHEN B, GUO H H, CUI W G, XIAO H L. Simulation analysis of leakage and diffusion of carbon dioxide with impurities[J]. Chemical Engineering of Oil and Gas, 2019, 48(3): 104?109.
[4] 陈磊,闫兴清,胡延伟,于帅,杨凯,陈绍云,等. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J]. 化工进展,2022,41(3):1241?1255. 10.16085/j.issn.1000-6613.2021-2096. CHEN L, YAN X Q, HU Y W, YU S, YANG K, CHEN S Y, et al. Research progress on fracture control of accidental leakage anddecompression in CO2 pipeline transportation[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241?1255.
[5] 陆诗建,张娟娟,杨菲,王风,刘苗苗,贡玉萍,等. CO2管道输送技术进展与未来发展浅析[J]. 南京大学学报(自然科学),2022, 58(6):944?952. 10.13232/j.cnki.jnju.2022.06.002. LU S J, ZHANG J J, YANG F, WANG F, LIU M M, GONG Y P, et al. Progress and future development trend of CO2 pipeline transportation technology[J]. Journal of Nanjing University (Natural Science), 2022, 58(6): 944?952.
[6] TAKHT RAVANCHI M, SAHEBDELFAR S. Catalytic conversions of CO2 to help mitigate climate change: recent process developments[J]. Process Safety and Environmental Protection, 2020, 145: 172?194. DOI: 10.1016/j.psep.2020.08.003.
[7] SAJI A, YOSHIDA H, SAKAI M, TANII T, KAMATA T, KITAMURA H. Fixation of carbon dioxide by clathrate-hydrate[J]. Energy Conversion and Management, 1992, 33(5/6/7/8): 643?649. DOI: 10.1016/0196-8904(92)90067-7.
[8] 苏丕波,梁金强,张伟,刘坊,王飞飞,李廷微,等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业,2020,40(8):77?89. 10.3787/j.issn.1000-0976.2020.08.006. SU P B, LIANG J Q, ZHANG W, LIU F, WANG F F, LI T W, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 2020, 40(8): 77?89.
[9] RYAKHOVSKIKH I V, BOGDANOV R I. Model of stress corrosion cracking and practical guidelines for pipelines operation[J]. Engineering Failure Analysis, 2021, 121: 105134. DOI: 10.1016/j.engfailanal.2020.105134.
[10] 殷布泽,黄维和,苗青,闫锋,欧阳欣,胡其会,等. CO2管道泄漏减压特性与裂纹扩展研究现状及发展趋势[J]. 油气储运,2023, 42(9):1042?1054. 10.6047/j.issn.1000-8241.2023.09.008. YIN B Z, HUANG W H, MIAO Q, OU Y X, HU Q H, et al. Status and development trends of research on CO2 decompression characteristics and crack propagation[J]. Oil & Gas Storage and Transportation, 2023, 42(9): 1042?1054.
[11] 陈磊,胡延伟,闫兴清,于帅,刘镇溪,乔帆帆,等. CO2管道断裂扩展与管内减压耦合特性数值模拟[J]. 油气储运,2024, 43(5):537?544. 10.6047/j.issn.1000-8241.2024.05.006. CHEN L, HU Y W, YAN X Q, YU S, LIU Z X, QIAO F F, et al. Numerical simulation of coupling characteristics between fracture propagation and internal decompression of CO2 pipelines[J]. Oil &Gas Storage and Transportation, 2024, 43(5): 537?544.
[12] 赫一凡,于帅,闫兴清,喻健良,等. 基于特征线法的CO2减压波传播模型构建及止裂壁厚研究[J]. 化工学报,2023,74(12):5038?5047,5075. 10.1194910438-1157.20230943. HE Y F, YU S, YAN X Q, YU J L, et al. Construction of CO2 decompression wave propagation model based on methodof characteristics and research on crack arrest wall thickness[J]. Chemical Industry and Engineering Progress, 2023, 74(12):5038?5047, 5075.
[13] NORDHAGEN H O, MUNKEJORD S T, HAMMER M, GRUBEN G, FOURMEAU M, DUMOULIN S. A fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibration[J]. Engineering Structures, 2017, 143: 245?260. DOI:10.1016/j.engstruct.2017.04.015.
[14] PAKRAVESH A, ZAREI H. Prediction of Joule-Thomson coefficients and inversion curves of natural gas by various equations of state[J]. Cryogenics, 2021, 118: 103350. DOI: 10. 1016/j.cryogenics.2021.103350.
[15] 付雅茹,张东,闫锋,王熠凡,白芳,张宏,等. CO2管道裂纹韧性扩展速度数值模拟[J]. 油气储运,2024,43(4):395?403. 10.6047/j.issn.1000-8241.2024.04.004. FU Y R, ZHANG D, YAN F, WANG Y F, BAI F, ZHANG H, et al. Numerical simulation of ductile crack propagation velocity in CO2 pipeline[J]. Oil & Gas Storage and Transportation, 2024, 43(4): 395?403.
[16] DI BIAGIO M, LUCCI A, MECOZZI E, SPINELLI C M. Fracture propagation prevention on CO2 pipelines: full scale experimental testing and verification approach[C]. Colorado Springs: Pipeline Technology Conference 2017, 2017: 1?17.
[17] 任科. 超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018. REN K. Study on theory and control method of supercritical carbon dioxide pipe fracture[D]. Xi'an: Xi'an Shiyou University, 2018.
[18] 喻健良,李宁,秦磊,董硕. 轴向穿透裂纹管道套管止裂性能分析[J]. 石油化工设备,2010,39(1):32?35. 10.3969/j.issn.1000-7466.2010.01.009. YU J L, LI N, QIN L, DONG S, et al. Analysis on Crack Arrest Performance of Axial Throughwall Crack Pipe Repaired by Sleeve[J]. Petro-Chemical Equipment, 2010, 39(1): 32?35.
[19] 许经纬. 碳纤维/玻璃纤维混杂增强复合材料力学性能研究及风电叶片应用[D]. 苏州:苏州大学,2019. XU J W. Study on mechanical properties of carbon/glass hybridized fabric reinforced composites and applications for wind turbine blades[D]. Suzhou: Soochow University, 2019.
[20] VAN DEN ABEELE F, AMLUNG L, DI BIAGIO M, ZIMMERMANN S. Towards a numerical design tool for composite crack arrestors on high pressure gas pipelines[C]. Calgary: 2010 8th International Pipeline Conference, 2010:359?368.
[21] RUDINGER G. Fundamentals of gas particle flow[M]. Elsevier, 1980:1?142.
[22] MUNKEJORD S T, HAMMER M, L?VSETH S W. CO2 transport: Data and models: A review[J]. Applied Energy, 2016, 169: 499?523. DOI: 10.1016/j.apenergy.2016.01.100.
[23] GOSWAMI S, ANITESCU C, CHAKRABORTY S, RABCZUK T. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102447. DOI: 10.1016/j.tafmec. 2019.102447.
[24] 帅健. 管线力学[M]. 北京:科学出版社,2010: 30?49. SHUAI j.Pipeline mechanics[M]. Beijing: Science Press, 2010:30?49.
[25] KONG D, HUANG X Y, XIN M Y, XIAN G j.Effects of defect dimensions and putty properties on the burst performances of steel pipes wrapped with CFRP composites[J]. International Journal of Pressure Vessels and Piping, 2020, 186: 104139. DOI: 10.1016/j.ijpvp.2020.104139.
[26] WANG L Y, SONG S L, DENG H B, ZHONG K. Finite-element analysis of crack arrest properties of fiber reinforced composites application in semi-elliptical cracked pipelines[J]. Applied Composite Materials, 2018, 25(2): 321?334. DOI: 10.1007/s10443-017-9621-9.
[27] GUAN C, ROTHWELL B, KONDO J, MURATA M, ARMSTRONG K. Full scale burst validation tests for crack arrestor designs for NPS 48 grade 550 rich gas pipeline[C]. Calgary: 2016 11th International Pipeline Conference, 2016:V003T05A005.
[28] WANG W G, YANG W, LI C Q, YANG S T. A new method to determine elasto-plastic J-integral for steel pipes with longitudinal semi-elliptical surface cracks[J]. Engineering failure analysis, 2020, 118: 104915. DOI: 10.1016/j.engfailanal.2020.104915.

相似文献/References:

[1]刘建武.二氧化碳输送管道工程设计的关键问题[J].油气储运,2014,33(4):369.[doi:10.6047/j.issn.1000-8241.2014.04.006]
 LIU Jianwu.Key issues related to engineering design of CO2 transportation pipeline[J].Oil & Gas Storage and Transportation,2014,33(01):369.[doi:10.6047/j.issn.1000-8241.2014.04.006]
[2]汤林,熊新强,云庆.中国石油油气田地面工程技术进展及发展方向[J].油气储运,2022,41(06):640.[doi:10.6047/j.issn.1000-8241.2022.06.006]
 TANG Lin,XIONG Xinqiang,YUN Qing.Progress and developing trend of CNPC’s oil-gas field surface engineering technology[J].Oil & Gas Storage and Transportation,2022,41(01):640.[doi:10.6047/j.issn.1000-8241.2022.06.006]
[3]刘广瑜,支树洁,柳歆,等.CCUS超临界CO2管道内腐蚀研究进展[J].油气储运,2024,43(05):1.
 Liu Guangyu,OuYang Xin,Liu Xin,et al.Research Progress on Corrosion Behavior of Supercritical CO2 Transportation Pipelines[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[4]胡其会 杨腾 苗青 列斯别克·,塔拉甫别克 李兆兰 范振宁.含杂质超临界CO2管道放空对管内温压变化的影响实验[J].油气储运,2024,43(05):1.
 HU Qihui,YANG Teng,MIAO Qing,et al.Experimental study on the influence of impurity containing supercritical CO2 pipeline venting on temperature and pressure changes inside the pipeline[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[5]柳歆 王海锋 杨腾 胡其会 殷布泽 李玉星 朱建鲁 朱振宇.高压CO2管道放空模拟及安全泄放[J].油气储运,2024,43(04):1.
 Liu Xin,Wang Haifeng,Yang Teng,et al.Simulation and safe discharge of high-pressure CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[6]张对红 李玉星.中国超临界CO2管道输送技术进展及展望[J].油气储运,2024,43(05):1.
 ZHANG Duihong LI Yuxing.Progress and prospects of supercritical CO2 pipeline transportation technology in China[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[7]陈兵 李磊磊 齐文娇.BTC方法研究进展及其应用于CO2管道止裂韧性计算的可行性[J].油气储运,2024,43(05):1.
 CHEN Bing,LI Leilei,QI Wenjiao.Research progress of BTC method and feasibility of its application to calculate the crack arrest toughness calculation of CO2 pipelines[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[8]李玉星 路建鑫 柳歆 柴冲 贾启运 王武昌 钱昊楠.超临界/密相CO2管道流量波动瞬态仿真计算模型[J].油气储运,2024,43(05):1.
 LI Yuxing,LU Jianxin,LIU Xin,et al.Transient Simulation Calculation Model for Flow Fluctuation in Supercritical/Dense Phase CO2 Pipeline[J].Oil & Gas Storage and Transportation,2024,43(01):1.
[9]张对红,李玉星.中国超临界CO2管道输送技术进展及展望[J].油气储运,2024,43(05):481.[doi:10.6047/j.issn.1000-8241.2024.05.001]
 ZHANG Duihong,LI Yuxing.Development and prospect of supercritical CO2 pipeline transmission technology in China[J].Oil & Gas Storage and Transportation,2024,43(01):481.[doi:10.6047/j.issn.1000-8241.2024.05.001]
[10]刘广瑜,支树洁,柳歆,等.CCUS超临界/密相CO2管道内腐蚀研究进展[J].油气储运,2024,43(05):510.[doi:10.6047/j.issn.1000-8241.2024.05.004]
 LIU Guangyu,ZHI Shujie,LIU Xin,et al.Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS[J].Oil & Gas Storage and Transportation,2024,43(01):510.[doi:10.6047/j.issn.1000-8241.2024.05.004]

备注/Memo

陈兵,女,1969年生,教授,2000年硕士毕业于甘肃工业大学化工过程机械专业,现主要从事油气田地面输送技术、CCUS管输安全技术、石油石化设备腐蚀与安全防护技术的研究工作。地址:陕西省西安市雁塔区电子二路18号,710065。电话:15102948086。Email:bchen@xsyu.edu.cn
通信作者:付子言,男,1996年生,在读硕士生,2019年毕业于成都工业学院,现主要从事CCUS技术管道安全输送研究工作。地址:陕西省西安市雁塔区电子二路18号,710065。电话: 18349105302。Email:1225881481@qq.com
基金项目:国家重大工程延长石油碳捕集和驱油封存一体化示范项目子项目“延长油田液态CO2管道输送可行性研究” ,ycsy2015ky-B-02;陕西省重点研发计划项目“基于CCUS的含杂质CO2管道输送安全关键技术研究”,2022SF-233;西安石油大学研究生创新项目立项“CO2管道玻璃纤维复合材料外部止裂结构性能研究”,YCS23214285。
● Received: 2024-04-25● Revised: 2024-05-26● Online: 2024-10-23

更新日期/Last Update: 2025-01-25