[1]赵赏鑫,田野.基于PP-YOLOE与MTL的管道腐蚀缺陷识别量化方法[J].油气储运,2024,43(12):1355-1364.[doi:10.6047/j.issn.1000-8241.2024.12.004]
 ZHAO Shangxin,TIAN Ye.Identification and size quantification of pipeline corrosion defects based on PP-YOLOE and MTL[J].Oil & Gas Storage and Transportation,2024,43(12):1355-1364.[doi:10.6047/j.issn.1000-8241.2024.12.004]
点击复制

基于PP-YOLOE与MTL的管道腐蚀缺陷识别量化方法

参考文献/References:

[1] 张丽珍,王文奥. 天然气管道阀门微小泄漏声发射检测及缺陷识别方法[J]. 油气储运,2024,43(6):656?664. 10.6047/j.issn.1000-8241.2024.06.007. ZHANG L Z,WANG W A. Acoustic emission detection and defect identification method for micro-leakage in natural gas pipeline valves[J]. Oil & Gas Storage and Transportation,2024,43(6):656?664.
[2] 张艳博,任瑞峰,梁鹏,姚旭龙,王帅. 基于热成像的埋地热力管道缺陷检测试验研究[J]. 仪器仪表学报,2020,41(6):161?170. 10.19650/j.cnki.cjsi.J2006239. ZHANG Y B,REN R F,LIANG P,YAO X L,WANG S. Experimental study on flaw detection of buried heat pipeline based by infrared thermal[J]. Chinese Journal of Scientific Instrument,2020,41(6): 161?170.
[3] 王竹筠. 基于深度学习的管道漏磁信号智能识别方法研究[D].沈阳:沈阳工业大学,2019. WANG Z J. Study on intelligent recognition of pipeline magnetic flux leakage signal based on deep learning[D]. Shenyang:Shenyang University of Technology,2019.
[4] 郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用,2019,55(12):20?36. 10.3778/j.issn.1002-8331.1903-0031. ZHENG Y P,LI G Y,LI Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications,2019,55(12): 20?36.
[5] 万勇,王宇,杨勇,戴永寿. 管道缺陷类型多特征量阈值识别方法[J]. 油气储运,2020,39(3):268?276. 10.6047/j.issn.1000-8241.2020.03.003. WAN Y,WANG Y,YANG Y,DAI Y S. Multi-characteristic threshold identification method for pipeline defect types[J]. Oil &Gas Storage and Transportation,2020,39(3): 268?276.
[6] 陈一诺,董绍华. 基于随机森林算法的管道缺陷预测方法[J].油气储运,2018,37(9):975?979. 10.6047/j.issn.1000-8241. 2018.09.003. CHEN Y N,DONG S H. Pipeline defect prediction method based on Random Forests algorithm[J]. Oil & Gas Storage and Transportation,2018,37(9): 975?979.
[7] 赵东升,杨理践,耿浩,郑福印,唐权宇. 一种面向管道缺陷检测的漏磁数据增强方法[J]. 仪表技术与传感器,2023(12):111?116. 10.3969/j.issn.1002-1841.2023.12.020. ZHAO D S,YANG L J,GENG H,ZHENG F Y,TANG Q Y. MFL data augmentation method for pipeline defect detection[J]. Instrument Technique and Sensor,2023(12): 111?116.
[8] 王国庆,李璇,杨理践,高松巍,耿浩. 基于改进YOLOv5算法的管道漏磁信号识别方法[J]. 计算机测量与控制,2022,30(8):147?154. 10.16526/j.cnki.11-4762/tp.2022.08.024. WANG G Q,LI X,YANG L J,GAO S W,GENG H. Pipeline magnetic flux leakage signal recognition method based on improved YOLOv5 algorithm[J]. Computer Measurement & Control,2022,30(8): 147?154.
[9] 时亚南,陈志远,刘兆英,陈迎春,张婷,范效礼,等. 改进YOLOv5n的管道DR缺陷图像检测方法[J]. 计算机工程与应用,2024,60(12):366?372. 10.3778/j.issn.1002-8331.2304-0397. SHI Y N,CHEN Z Y,LIU Z Y,CHEN Y C,ZHANG T,FAN X L,et al. Improved YOLOv5n pipeline DR defect image detection method[J]. Computer Engineering and Applications,2024,60(12):366?372.
[10] LYU C G,ZHANG M Q,LI B H,LIU Y G,LIN X J. High reliability pipeline leakage detection based on machine vision in complex industrial environment[J]. IEEE Sensors Journal,2022,22(21): 20748?20760. DOI: 10.1109/JSEN.2022.3206456.
[11] YANG L J,WANG Z J,GAO S W. Pipeline magnetic flux leakage image detection algorithm based on multiscale SSD network[J]. IEEE Transactions on Industrial Informatics,2020,16(1): 501?509. DOI: 10.1109/TII.2019.2926283.
[12] NGUYEN H T,NGUYEN M N,PHUNG L D,PHAM L T T. Anomalies detection in chest X-rays images using faster R-CNN and YOLO[J]. Vietnam Journal of Computer Science,2023,10(4):499?515. DOI: 10.1142/S2196888823500094.
[13] ZHANG W K,HONG Z Y,XIONG L P,ZENG Z Q,CAI Z S,TAN K Y. Sinextnet: a new small object detection model for aerial images based on PP-Yoloe[J]. Journal of Artificial Intelligence and Soft Computing Research,2024,14(3): 251?265. DOI: 10.2478/jaiscr-2024-0014.
[14] SHETTY A K,SAHA I,SANGHVI R M,SAVE S A,PATEL Y J. A review: object detection models[C]. Maharashtra: 2021 6th International Conference for Convergence in Technology (I2CT),2021: 1-8.
[15] 崔国宁,杨理践,耿浩,刘屹然. 基于卷积神经网络的管道缺陷量化识别方法[J]. 仪表技术与传感器,2022(10):99?103. 10.3969/j.issn.1002-1841.2022.10.018. CUI G N,YANG L J,GENG H,LIU Y R. Quantitative identification method of pipeline defects based on convolutional neural network[J]. Instrument Technique and Sensor,2022(10):99?103.
[16] 邢海燕,王松弘泽,弋鸣,杨健平,朱孔阳,刘超. 基于IPSO-GRU深度学习算法的海底管道缺陷尺寸磁记忆定量反演模型[J].工程科学学报,2022,44(5):911?919. 10.3321/j.issn.1001-053X.2022.5.bjkjdxxb202205010.XING H Y,WANG S H Z,YI M,YANG J P,ZHU K Y,LIU C. Metal magnetic memory quantitative inversion model based on IPSO-GRU algorithm for detecting submarine pipeline defect[J]. Chinese Journal of Engineering,2022,44(5): 911?919.
[17] ZHANG Y,YANG Q. A survey on Multi-Task learning[J]. IEEE Transactions on Knowledge and Data Engineering,2022,34(12):5586?5609. DOI: 10.1109/TKDE.2021.3070203.
[18] CRAWSHAW M. Multi-task learning with deep neural networks:a survey[DB/OL]. (2020-09-10)[2024-07-05]. https://arxiv.org/abs/2009.09796.
[19] 欧正宇,韩赞东,岑佶松,李夏喜. 埋地管道检测技术现状与展望[J]. 测控技术,2023,42(6):1?9. 10.19708/j.ckjs.2022. 11.323. OU Z Y,HAN Z D,CEN J S,LI X X. Present status and perspectives of inspection technology for buried pipeline[J]. Measurement & Control Technology,2023,42(6): 1?9.
[20] 陈兆凡,赵春阳,李博. 一种改进IoU损失的边框回归损失函数[J]. 计算机应用研究,2020,37(增刊2):293?296. CHEN Z F,ZHAO C Y,LI B. Bounding box regression loss function based on improved IoU loss[J]. Application Research of Computers,2020,37(S2): 293?296.
[21] 任伟建,陈明文,康朝海,霍凤财,任璐,张永丰. 基于YOLOv3的金属表面缺陷检测研究[J]. 控制工程,2024,31(7):1219?1228. 10.14107/j.cnki.kzgc.20220773. REN W J,CHEN M W,KANG C H,HUO F C,REN L,ZHANG Y F. Research on metal surface defect detection based on YOLOv3[J]. Control Engineering of China,2024,31(7): 1219?1228.
[22] WANG Y S,HE M Y,SUN L,WU D,WANG Y,QING X L. Weighted adaptive Kalman filtering-based diverse information fusion for hole edge crack monitoring[J]. Mechanical Systems and Signal Processing,2022,167(Part A): 108534.
[23] FANG H,GONG C L,LI C N,ZHANG Y W,DA RONCH A. A sequential optimization framework for simultaneous design variables optimization and probability uncertainty allocation[J]. Structural and Multidisciplinary Optimization,2021,63(3):1307?1325. DOI: 10.1007/s00158-020-02759-1.
[24] SU S S W,KEK S L. An improvement of stochastic gradient descent approach for mean-variance portfolio optimization pro-blem[J]. Journal of Mathematics,2021,2021: 8892636. DOI: 10.1155/2021/8892636.
[25] YANG J X,LONG Q. A modification of adaptive moment estimation (Adam) for machine learning[J]. Journal of Industrial and Management Optimization,2024,20(7): 2516?2540. DOI: 10.3934/jimo.2024014.
[26] PARHI R,NOWAK R D. The role of neural network activation functions[J]. IEEE Signal Processing Letters,2020,27: 1779?1783. DOI: 10.1109/LSP.2020.3027517.
[27] 张乃雪,钟羽中,赵涛,佃松宜. 基于Smooth-DETR的产品表面小尺寸缺陷检测算法[J]. 计算机应用研究,2022,39(8):2520?2525. 10.19734/j.issn.1001-3695.2022.01.0011. ZHANG N X,ZHONG Y Z,ZHAO T,DIAN S Y. Detection method for small-size surface defects based on Smooth-DETR[J]. Application Research of Computers,2022,39(8): 2520?2525.
[28] 田野,高涛,许光达,丁融. 长输管道漏磁内检测缺陷识别量化技术研究[J]. 油气田地面工程,2018,37(10):51?54,59. 10.3969/j.issn.1006-6896.2018.10.012. TIAN Y,GAO T,XU G D,DING R. Quantitative technology research on the defect identification of magnetic leakage internal detection in long distance pipelines[J]. Oil-Gas Field Surface Engineering,2018,37(10): 51?54,59.
[29] 赵帅,秦林,林冬,高健,刘畅,李潮浪,等. 油气管道漏磁数据处理和缺陷识别量化方法的研究进展[J]. 腐蚀与防护,2024,45(2):27?35. 10.11973/fsyfh-202402004. ZHAO S,QIN L,LIN D,GAO J,LIU C,LI C L,et al. Progress in research on magnetic flux leakage data processing and defect identification quantification methods[J]. Corrosion & Protection,2024,45(2): 27?35.
[30] 李睿. 油气管道内检测技术与数据分析方法发展现状及展望[J].油气储运,2024,43(3):241?256. 10.6047/j.issn.1000-8241. 2024.03.001. LI R. Current progress and prospects of in-line inspection techniques and data analysis methods for oil and gas pipelines[J]. Oil & Gas Storage and Transportation,2024,43(3): 241?256.

相似文献/References:

[1]曾忠刚 温秀荷 索杏兰 孔军 姜敏 陈凯 赵庆兵 曾朗峻.塔河凝析油管道结蜡计算[J].油气储运,2012,31(8):622.[doi:10.6047/j.issn.1000-8241.2012.08.018]
 Zeng Zhongang,Wen Xiuhe,Suo Xinglan,et al.Wax deposition calculation for Tahe Condensate Pipeline[J].Oil & Gas Storage and Transportation,2012,31(12):622.[doi:10.6047/j.issn.1000-8241.2012.08.018]
[2]夏文鹤 茹黎南 李明 曹谢东.基于卫星物联网技术的油气管道远程监控[J].油气储运,2012,31(12):898.[doi:10.6047/j.issn.1000-8241.2012.12.006]
 Xia Wenhe,Ru Linan,Li Ming,et al. Remote monitoring on oil and gas pipelines with satellite Internet of Things network[J].Oil & Gas Storage and Transportation,2012,31(12):898.[doi:10.6047/j.issn.1000-8241.2012.12.006]
[3]董绍华 韩忠晨 杨毅 曹兴.物联网技术在管道完整性管理中的应用[J].油气储运,2012,31(12):906.[doi:10.6047/j.issn.1000-8241.2012.12.008]
 Dong Shaohua,Han Zhongchen,Yang Yi,et al.The application of Internet of Things technology in the integrity management of pipeline[J].Oil & Gas Storage and Transportation,2012,31(12):906.[doi:10.6047/j.issn.1000-8241.2012.12.008]
[4]李睿,侯宇,刘淑聪,等.锚纹特征对管道外防腐环氧涂层附着力的影响[J].油气储运,2011,30(05):355.[doi:10.6047/j.issn.1000-8241.2011.05.010]
 Li Rui,Hou Yu,Li Jingmiao,et al.Impact of pattern on the adhesion of pipe external epoxy coating[J].Oil & Gas Storage and Transportation,2011,30(12):355.[doi:10.6047/j.issn.1000-8241.2011.05.010]
[5]段纪淼,宫敬,张宇,等.多相混输管道蜡沉积研究进展[J].油气储运,2011,30(04):241.[doi:10.6047/j.issn.1000-8241.2011.04.001]
 Duan Jimiao,Gong Jing,Zhang Yu,et al.Research progress of wax deposition in multiphase mixed transmission pipeline[J].Oil & Gas Storage and Transportation,2011,30(12):241.[doi:10.6047/j.issn.1000-8241.2011.04.001]
[6]宋晓琴,刘广文,王雯娟.管道油品泄漏原因及其对环境的影响[J].油气储运,2011,30(04):297.[doi:10.6047/j.issn.1000-8241.2011.04.016]
 Song Xiaoqin,Liu Guangwen,Wang Wenjuan. The influence of oil pipeline leakage on environmental pollution [J].Oil & Gas Storage and Transportation,2011,30(12):297.[doi:10.6047/j.issn.1000-8241.2011.04.016]
[7]蔡亮学,何利民,吕宇玲,等.水平定向钻管道穿越孔底泥浆的力学特性[J].油气储运,2011,30(01):25.[doi:10.6047/j.issn.1000-8241.2011.01.007]
 Cai Liangxue,He Limin,Lv Yuling,et al.Hole-bottom slurry mechanical properties of horizontal directional drilling in pipeline crossing project[J].Oil & Gas Storage and Transportation,2011,30(12):25.[doi:10.6047/j.issn.1000-8241.2011.01.007]
[8]樊三新,刘玉玲,楚威威.高寒地区管道低温水试压方法[J].油气储运,2011,30(01):73.[doi:10.6047/j.issn.1000-8241.2011.01.020]
 Fan Sanxin,Liu Yuling,Chu Weiwei.Pipeline hydrotest method of cold water in frigid zone[J].Oil & Gas Storage and Transportation,2011,30(12):73.[doi:10.6047/j.issn.1000-8241.2011.01.020]
[9]杜明俊,张振庭,张朝阳,等.多相混输管道90°弯管冲蚀破坏应力分析[J].油气储运,2011,30(06):427.[doi:10.6047/j.issn.1000-8241.2011.06.006]
 Du Mingjun,Chao Ling,Fu Xiaodong,et al.Analysis of erosion fracture stress of 90° elbow in multi-phase mixed transmission pipeline[J].Oil & Gas Storage and Transportation,2011,30(12):427.[doi:10.6047/j.issn.1000-8241.2011.06.006]
[10]高河东,祁志江,任金岭,等.川气东送管道野三河跨越方案比选与实施[J].油气储运,2011,30(06):445.[doi:10.6047/j.issn.1000-8241.2011.06.011]
 Gao Hedong,Qi Zhijiang,Ren Jinling,et al.Programs comparison and construction of the Yesanhe River Overhead Crossing NG Project of Sichuan-to-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2011,30(12):445.[doi:10.6047/j.issn.1000-8241.2011.06.011]

备注/Memo

赵赏鑫,男,1979年生,教授级高工,2006年博士毕业于中国石油大学(北京)机械设计与理论专业,现主要从事油气管道建设管理工作。地址:新疆乌鲁木齐市高新区(新市区)喀什东路街道四平路2288号,830010。电话:0991-7683051。Email:tianye04@pipechina.com.cn
● Received: 2024-07-29● Revised: 2024-08-23● Online: 2024-10-09

更新日期/Last Update: 2024-12-25