[1]杜渐,李昊翀,廖绮,等.耦合流动机理与运行数据的成品油管道瞬态仿真[J].油气储运,2024,43(10):1157-1172.[doi:10.6047/j.issn.1000-8241.2024.10.009]
 DU Jian,LI Haochong,LIAO Qi,et al.Transient simulation of multi-product pipeline driven by flow mechanisms and operational data[J].Oil & Gas Storage and Transportation,2024,43(10):1157-1172.[doi:10.6047/j.issn.1000-8241.2024.10.009]
点击复制

耦合流动机理与运行数据的成品油管道瞬态仿真

参考文献/References:

[1] 任书健.成品油管道数字化之离线仿真系统开发[D].北京:中国石油大学(北京),2023. REN S J. Development of offline simulation system for digitalization of multi-product pipeline[D]. Beijing: China University of Petroleum (Beijing), 2023.
[2] 何蕾.基于混合模型的输油站场工艺数字孪生体构建方法研究[D].北京:中国石油大学(北京),2022. HE L. Study on digital twin method for oil pipeline station process based on hybrid model[D]. Beijing: China University of Petroleum (Beijing), 2022.
[3] 牛磊,荆海晓,李鹏峰,李国栋,贺翠玲.考虑非恒定摩阻和空化的水击数值模拟[J/OL].应用力学学报:1-15[2024-06-05]. http://kns.cnki.net/kcms/detail/61.1112.O3.20230719.1804.009.html. NIU L, JING H X, LI P F, LI G D, HE C L. Numerical simulation of water hammer considering unsteady friction and cavitation[J/OL]. Chinese Journal of Applied Mechanics:1-15[2024-06-05]. http://kns.cnki.net/kcms/detail/61.1112.O3.20230719.1804.009.html.
[4] KULIEV S Z. Numerical method of solution of the coefficient-inverse problem for unsteady motion in an oil pipeline[J]. Journal of Engineering Physics and Thermophysics, 2015, 88(2):486-496. DOI: 10.1007/s10891-015-1213-7.
[5] 孙璐璐,李长俊,贾文龙,张财功,余秋爽,罗金华.大落差输油管道局部高点水击压力预测方程研究[J].中国安全生产科学技术,2022,18(6):172-177. 10.11731/j.issn.1673-193x.2022.06.026. SUN L L, LI C J, JIA W L, ZHANG C G, YU Q S, LUO J H. Study on prediction equation of water hammer pressure at local high point of oil pipeline with large drop[J]. Journal of Safety Science and Technology, 2022, 18(6): 172-177.
[6] 杨金威.中哈原油管道系统节能优化运行与水击超前保护策略研究[D].大庆:东北石油大学,2021. YANG J W. Study on optimization of energy saving operation and advanced protection strategy of water hammer: aiming at China-Kazakhstan crude oil pipeline[D]. Daqing: Northeast Petroleum University, 2021.
[7] 廖绮,刘春颖,杜渐,蓝浩,梁永图,张浩然.人工智能赋能油气管道运行管理的应用及展望[J].油气储运,2024,43(6):601-613. 10.6047/j.issn.1000-8241.2024.06.001. LIAO Q, LIU C Y, DU J, LAN H, LIANG Y T, ZHANG H R. Application and prospect of artificial intelligence in empowering the operation and management of oil and gas pipelines[J]. Oil &Gas Storage and Transportation, 2024, 43(6): 601-613.
[8] DURGUT, LEBLEBICIO LU M K. State estimation of transient flow in gas pipelines by a Kalman filter-based estimator[J]. Journal of Natural Gas Science and Engineering, 2016, 35(Part A): 189-196. DOI: 10.1016/j.jngse.2016.08.062.
[9] 刘鹏.基于UKF的输油管道多泄漏检测和定位方法研究[D].青岛:中国石油大学(华东),2018. LIU P. Multi-leak detection and location in oil pipelines based on unscented Kalman filter[D]. Qingdao: China University of Petroleum (East China), 2018.
[10] 贺宁,陈奕昕,贺利乐,姜依纯.基于粒子滤波与压缩感知的管道泄漏定位[J].仪器仪表学报,2019,40(12):36-46. 10.19650/j.cnki.cjsi.J1905596. HE N, CHEN Y X, HE L L, JIANG Y C. Pipeline leak location based on particle filter and compressed sensing[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 36-46.
[11] 贺利乐,陈奕昕,贺宁,吴文.基于粒子滤波的管道泄漏检测与定位方法[J].控制工程,2021,28(4):787-798. 10.14107/j.cnki.kzgc.20190197. HE L L, CHEN Y X, HE N, WU W. Pipeline leak detection and location method based on particle filter[J]. Control Engineering of China, 2021, 28(4): 787-798.
[12] CHEN L, JIN P, YANG J, LI Y, SONG Y. Robust Kalman filter-based dynamic state estimation of natural gas pipeline networks[J]. Mathematical Problems in Engineering, 2021, 2021: 5590572. DOI: 10.1155/2021/5590572.
[13] HE L, WEN K, WU C C, GONG J, PING X. Hybrid method based on particle filter and NARX for real-time flow rate estimation in multi-product pipelines[J]. Journal of Process Control, 2020, 88: 19-31. DOI: 10.1016/j.jprocont.2020.02.004.
[14] 董雷,王春斐,李烨,王新迎,董骁翀,孙英云,等.多时间断面电-气综合能源系统状态估计[J].电网技术,2020,44(9):3458-3465. 10.13335/j.1000-3673.pst.2020.0259. DONG L, WANG C F, LI Y, WANG X Y, DONG X C, SUN Y Y, et al. Multi-snapshot State Estimation of Electric-gas Integrated Energy System[J]. Power System Technology, 2020, 44(9): 3458-3465.
[15] MODISETTE J P. Maximum likelihood approach to state estimation in online pipeline models[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 813-824.
[16] 李长俊,张员瑞,贾文龙,仇柏林,何杰,王硕.大型天然气管网系统在线仿真方法及软件开发[J].油气储运,2022,41(6):723-731. 10.6047/j.issn.1000-8241.2022.06.014. LI C J, ZHANG Y R, JIA W L, QIU B L, HE J, WANG S. Online simulation method and software development of large-scale natural gas pipeline network system[J]. Oil & Gas Storage and Transportation, 2022, 41(6): 723-731.
[17] HAFSI Z, ELAOUD S, MISHRA M. A computational modelling of natural gas flow in looped network: Effect of upstream hydrogen injection on the structural integrity of gas pipelines[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 107-117. DOI: 10.1016/j.jngse.2019.01.021.
[18] SUKHAREV M G, KULALAEVA M A. Identification of model flow parameters and model coefficients with the help of integrated measurements of pipeline system operation parameters[J]. Energy, 2021, 232: 120864. DOI: 10.1016/j.energy.2021.120864.
[19] ZHOU X, XU W R, XIN K L, YAN H X, TAO T. Self-adaptive calibration of real-time demand and roughness of water distribution systems[J]. Water Resources Research, 2018, 54(8):5536-5550. DOI: 10.1029/2017WR022147.
[20] ZHANG C, SHAFIEEZADEH A. Nested physics-informed neural network for analysis of transient flows in natural gas pipelines[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106073. DOI: 10.1016/j.engappai.2023.106073.
[21] 牛恩建.数据驱动的管道优化运行[D].北京:北京化工大学, 2022. NIU E J. Optimal operation of pipeline based on data-driven[D]. Beijing: Beijing University of Chemical Technology, 2022.
[22] 严大凡.输油管道设计与管理[M].北京:石油工业出版社,1986:1-50. YAN D F. Design and management of oil pipeline[M]. Beijing:Petroleum Industry Press, 1986: 1-50.
[23] 杜渐,郑坚钦,夏玉恒,张秀玲,徐宁,廖绮,等.耦合混油发展机理与数据修正的成品油管道混油浓度预测[J].油气储运,2024,43(7):796-808. 10.6047/j.issn.1000-8241.2024.07.009. DU J, ZHENG J Q, XIA Y H, ZHANG X L, XU N, LIAO Q, et al. Prediction of mixed oil concentration in product oil pipeline coupling oil mixing mechanism and data correction[J]. Oil & Gas Storage and Transportation, 2024, 43(7): 796-808.
[24] DU J, ZHENG J Q, LIANG Y T, WANG B H, KLEME? J J, LU X Y, et al. A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction[J]. Energy, 2023, 263(Part D): 125976. DOI: 10.1016/j.energy.2022.125976.
[25] DU J, ZHENG J Q, LIANG Y T, XU N, KLEME? J J, WANG B H, et al. Deeppipe: a two-stage physics-informed neural network for predicting mixed oil concentration distribution[J]. Energy, 2023, 276: 127452. DOI: 10.1016/j.energy.2023.127452.
[26] DU J, ZHENG J Q, LIANG Y T, LU X Y, KLEME? J J, VARBANOV P S, et al. A hybrid deep learning framework for predicting daily natural gas consumption[J]. Energy, 2022, 257:124689. DOI: 10.1016/j.energy.2022.124689.
[27] DU J, ZHENG J Q, LIANG Y T, XIA Y H, WANG B H, SHAO Q, et al. Deeppipe: an intelligent framework for predicting mixed oil concentration in multi-product pipeline[J].Energy, 2023, 282: 128810. DOI: 10.1016/j.energy.2023.128810.

相似文献/References:

[1]徐广丽,张国忠,赵仕浩.管道低洼处积水排除实验[J].油气储运,2011,30(05):369.[doi:10.6047/j.issn.1000-8241.2011.05.014]
 Xu Guangli,Zhang Guozhong,Zhao Shihao.An experiment on dewatering for lower location of pipeline[J].Oil & Gas Storage and Transportation,2011,30(10):369.[doi:10.6047/j.issn.1000-8241.2011.05.014]
[2]戴福俊.成品油顺序输送混油的检测与切割[J].油气储运,2011,30(04):255.[doi:10.6047/j.issn.1000-8241.2011.04.004]
 Dai Fujun.Detection and cutting technique of oil contamination in batch transportation process[J].Oil & Gas Storage and Transportation,2011,30(10):255.[doi:10.6047/j.issn.1000-8241.2011.04.004]
[3]郭祎,张道全,刘鹏,等.西部成品油管道末站混油切割改进措施[J].油气储运,2011,30(07):520.[doi:10.6047/j.issn.1000-8241.2011.07.011]
 Guo Yi,Zhang Daoquan,Liu Peng,et al.Improvement of mixed oil cutting of Western Oil Product Pipeline Terminal[J].Oil & Gas Storage and Transportation,2011,30(10):520.[doi:10.6047/j.issn.1000-8241.2011.07.011]
[4]张艳彩,李珍,李绍文.成品油管道工程经济的评价问题[J].油气储运,2011,30(07):550.[doi:10.6047/j.issn.1000-8241.2011.07.022]
 Zhang Yancai,Li Zhen,Li Shaowen.Issues of economic assessment in products oil pipeline project[J].Oil & Gas Storage and Transportation,2011,30(10):550.[doi:10.6047/j.issn.1000-8241.2011.07.022]
[5]李会朵,梁静华,朱峰,等.成品油混油掺混实验与临界比例计算[J].油气储运,2011,30(03):180.[doi:10.6047/j.issn.1000-8241.2011.03.006]
 Li Huiduo,Liang Jinghua,Zhu Feng,et al.Mixing experiment and critical proportion calculation for contamination of products[J].Oil & Gas Storage and Transportation,2011,30(10):180.[doi:10.6047/j.issn.1000-8241.2011.03.006]
[6]牛迎战,刘甫,林猛,等.成品油长输管道盗油点抢修方法的应用[J].油气储运,2011,30(02):150.[doi:10.6047/j.issn.1000-8241.2011.02.019]
 Niu Yingzhan,Liu Fu,Lin Meng,et al.Application of the emergency repair method in leak point of products pipeline[J].Oil & Gas Storage and Transportation,2011,30(10):150.[doi:10.6047/j.issn.1000-8241.2011.02.019]
[7]林猛,牛迎战,张玲.EP减阻剂在抚顺-鲅鱼圈成品油管道的应用[J].油气储运,2011,30(05):350.[doi:10.6047/j.issn.1000-8241.2011.05.008]
 Lin Meng,Niu Yingzhan,Zhang Ling.Application of EP DRA in Fushun-Bayuquan Products Pipeline[J].Oil & Gas Storage and Transportation,2011,30(10):350.[doi:10.6047/j.issn.1000-8241.2011.05.008]
[8]朱峰,梁静华,李会朵,等.成品油混油切割与掺混试验[J].油气储运,2011,30(05):364.[doi:10.6047/j.issn.1000-8241.2001.05.013]
 Zhu Feng,Liang Jinghua,Li Huiduo,et al.Testing on contamination cut and blending for products[J].Oil & Gas Storage and Transportation,2011,30(10):364.[doi:10.6047/j.issn.1000-8241.2001.05.013]
[9]宋飞,朱峰,潘红梅,等.兰成渝管道杂质来源分析[J].油气储运,2010,29(5):381.[doi:10.6047/j.issn.1000-8241.2010.05.021]
 Song Fei,Zhu Feng,Pan Hongmei.Analysis on lmpurity Origin of Lanzhou-Chengdu-Chongqing Oil Product Pipeline[J].Oil & Gas Storage and Transportation,2010,29(10):381.[doi:10.6047/j.issn.1000-8241.2010.05.021]
[10]马红娜,李彦娥,武征.成品油管道泄漏的环境风险评价[J].油气储运,2011,30(11):801.[doi:10.6047/j.issn.1000-8241.2011.11.001]
 Ma Hongna,Li Yane,Wu Zheng.Environmental risk evaluation of leaked products pipeline[J].Oil & Gas Storage and Transportation,2011,30(10):801.[doi:10.6047/j.issn.1000-8241.2011.11.001]
[11]杜渐,李昊翀,廖绮,等.耦合流动机理与运行数据的成品油管道瞬态仿真[J].油气储运,2024,43(10):1.
 Du Jian,Li Haochong,Liao Qi,et al.Transient Simulation of Multi-Product Pipeline Driven by Flow Mechanism and Operation Data[J].Oil & Gas Storage and Transportation,2024,43(10):1.

备注/Memo

杜渐,男,1997年生,在读博士生,2020年毕业于中国石油大学(北京)石油与天然气工程专业,现主要从事油气长输管道数字化与智能化方向的研究工作。地址:北京市昌平区府学路18号,102249。电话:18810857210。Email:jiandu_cup1997@outlook.com
通信作者:廖绮,女,1994年生,副教授,2021年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事长输管道与油气物流优化相关技术研究。地址:北京市昌平区府学路18号,102249。电话:13261657239。Email:qliao@cup.edu.cn
基金项目:国家自然科学基金资助项目“面向大规模成品油管网调度的数据解析与优化融合方法”,52202405;中国石油大学(北京)校基金资助项目“输油管道智能监测与控制优化方法研究”,2462023BJRC026。
· Received: 2024-05-27 · Revised: 2024-06-26 · Online: 2024-08-08

更新日期/Last Update: 2024-10-25