[1]洪伟民,俞欣然,李玉星.含水层地下储氢性能数值模拟[J].油气储运,2024,43(10):1109-1117.[doi:10.6047/j.issn.1000-8241.2024.10.004]
 HONG Weimin,YU Xinran,LI Yuxing.Numerical simulation of underground hydrogen storage performance in aquifers[J].Oil & Gas Storage and Transportation,2024,43(10):1109-1117.[doi:10.6047/j.issn.1000-8241.2024.10.004]
点击复制

含水层地下储氢性能数值模拟

参考文献/References:

[1] 潘松圻,邹才能,王杭州,熊波,王子恒,王珂,等.地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战[J].天然气工业, 2023,43(11):164-180. 10.3787/j.issn.1000-0976.2023.11.016. PAN S Q, ZOU C N, WANG H Z, XIONG B, WANG Z H, WANG K, et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir-type underground hydrogen storages[J]. Natural Gas Industry, 2023, 43(11): 164-180.
[2] 闫伟,冷光耀,李中,贺梦琦,邓金根,马泽林.氢能地下储存技术进展和挑战[J].石油学报,2023,44(3):556-568. 10.7623/syxb202303013. YAN W, LENG G Y, LI Z, HE M Q, DENG J G, MA Z L. Progress and challenges of underground hydrogen storage technology[J]. Acta Petrolei Sinica, 2023, 44(3): 556-568.
[3] 胡玮鹏,陈光,齐宝金,张永海.埋地纯氢/掺氢天然气管道泄漏扩散数值模拟[J].油气储运,2023,42(10):1118-1127,1136. 10.6047/j.issn.1000-8241.2023.10.005. HU W P, CHEN G, QI B J, ZHANG Y H. Numerical simulation of leakage and diffusion of buried pure hydrogen/hydrogen-doped natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2023, 42(10): 1118-1127, 1136.
[4] 刘翠伟,洪伟民,王多才,支树洁,张睿,段瑶,等.地下储氢技术研究进展[J].油气储运,2023,42(8):841-855. 10.6047/j.issn.1000-8241.2023.08.001. LIU C W, HONG W M, WANG D C, ZHI S J, ZHANG R, DUAN Y, et al. Research progress of underground hydrogen storage technology[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 841-855.
[5] 陆佳敏,徐俊辉,王卫东,王浩,徐孜俊,陈留平.大规模地下储氢技术研究展望[J].储能科学与技术,2022,11(11):3699-3707. 10.19799/j.cnki.2095-4239.2022.0297. LU J M, XU J H, WANG W D, WANG H, XU Z J, CHEN L P. Development of large-scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 2022, 11(11): 3699-3707.
[6] 崔传智,任侃,吴忠维,姚同玉,徐鸿,邱小华.地下含水层储存氢气的可行性分析[J].石油与天然气化工,2022,51(5):41-50.10.3969/j.issn.1007-3426.2022.05.007. CUI C Z, REN K, WU Z W, YAO T Y, XU H, QIU X H. Feasibility analysis of hydrogen storage in underground aquifers[J]. Chemical Engineering of Oil and Gas, 2022, 51(5): 41-50.
[7] 郝永卯,任侃,崔传智,吴忠维.含水层型地下储氢库垫层气类型优选及注采参数优化[J].储能科学与技术,2023,12(9):2881-2887. 10.19799/j.cnki.2095-4239.2023.0348. HAO Y M, REN K, CUI C Z, WU Z W. Optimization of cushion gas types and injection production parameters for underground hydrogen storage in aquifers[J]. Energy Storage Science and Technology, 2023, 12(9): 2881-2887.
[8] SAINZ-GARCIA A, ABARCA E, RUBI V, GRANDIA F. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16657-16666. DOI: 10.1016/j.ijhydene.2017.05.076.
[9] JADHAWAR P, SAEED M. Optimizing the operational efficiency of the underground hydrogen storage scheme in a deep North Sea aquifer through compositional simulations[J]. Journal of Energy Storage, 2023, 73(Part A): 108832. DOI: 10.1016/j.est.2023.108832.
[10] PAN B, LIU K, REN B, ZHANG M S, JU Y, GU J W, et al. Impacts of relative permeability hysteresis, wettability, and injection/withdrawal schemes on underground hydrogen storage in saline aquifers[J]. Fuel, 2023, 333(Part 2): 126516. DOI:10.1016/j.fuel.2022.126516.
[11] LYSYY M, FERN? M A, ERSLAND G. Effect of relative permeability hysteresis on reservoir simulation of underground hydrogen storage in an offshore aquifer[J]. Journal of Energy Storage, 2023, 64: 107229. DOI: 10.1016/j.est.2023.107229.
[12] DELSHAD M, UMURZAKOV Y, SEPEHRNOORI K, EICHHUBL P, BATISTA FERNANDES B R. Hydrogen storage assessment in depleted oil reservoir and saline aquifer[J]. Energies, 2022, 15(21): 8132. DOI: 10.3390/en15218132.
[13] BO Z K, H?RNING S, UNDERSCHULTZ J R, GARNETT A, HURTER S. Effects of geological heterogeneity on gas mixing during underground hydrogen storage (UHS) in braided-fluvial reservoirs[J]. Fuel, 2024, 357(Part C): 129949. DOI: 10.1016/j.fuel.2023.129949.
[14] MAHJOUR S K, BADHAN J H, FAROUGHI S A. Uncertainty quantification in CO2 trapping mechanisms: a case study of PUNQ-S3 reservoir model using representative geological realizations and unsupervised machine learning[J]. Energies, 2024, 17(5): 1180. DOI: 10.3390/en17051180.
[15] JUANES R, SPITERI E J, ORR JR F M, et al. Impact of relative permeability hysteresis on geological CO2 storage[J]. Water Resources Research, 2006, 42(12):W12418. DOI:10.1029/2005WR004806.
[16] ERSHADNIA R, WALLACE C D, HOSSEINI S A, DAI Z X, SOLTANIAN M R. Capillary heterogeneity linked to methane lateral migration in shallow unconfined aquifers[J]. Geophysical Research Letters, 2021, 48(23): e2021GL095685. DOI: 10.1029/2021GL095685.
[17] DELSHAD M, ALHOTAN M, BATISTA FERNANDES B R, UMURZAKOV Y, SEPEHRNOORI K. Pros and cons of saline aquifers against depleted hydrocarbon reservoirs for hydrogen energy storage[C]. Houston: SPE Annual Technical Conference and Exhibition, 2022: SPE-210351-MS.
[18] DELSHAD M, ALHOTAN M M, FERNANDES B R B, UMURZAKOV Y, SEPEHRNOORI K. Modeling flow and transport in saline aquifers and depleted hydrocarbon reservoirs for hydrogen energy storage[J]. SPE Journal, 2023, 28(5):2547-2565. DOI: 10.2118/210351-PA.
[19] WANG X K, WU W S. Numerical comparison of hydrogen and CO2 storage in deep saline aquifers from pore scale to field scale[J]. Journal of Energy Engineering, 2023, 149(5):04023038. DOI: 10.1061/JLEED9.EYENG-4957.
[20] ERSHADNIA R, SINGH M, MAHMOODPOUR S, MEYAL A, MOEINI F, HOSSEINI S A, et al. Impact of geological and operational conditions on underground hydrogen storage[J]. International Journal of Hydrogen Energy, 2023, 48(4): 1450-1471. DOI: 10.1016/j.ijhydene.2022.09.208.
[21] CHAI M J, CHEN Z X, NOUROZIEH H, YANG M. Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: a case study capturing hydrogen interactions and cushion gas injection[J]. Applied Energy, 2023, 334:120655. DOI: 10.1016/j.apenergy.2023.120655.
[22] OLDENBURG C M, FINSTERLE S, TRAUTZ R C. Water upconing in underground hydrogen storage: sensitivity analysis to inform design of withdrawal[J]. Transport in Porous Media, 2024, 151(1): 55-84. DOI: 10.1007/s11242-023-02033-0.
[23] WANG G, PICKUP G, SORBIE K, MACKAY E. Numerical modelling of H2 storage with cushion gas of CO2 in subsurface
porous media: Filter effects of CO2 solubility[J]. Internationa Journal of Hydrogen Energy, 2022, 47(67): 28956-28968. DOI 10.1016/j.ijhydene.2022.06.201.
[24] ABREU E, FERRAZ P, LAMBERT W. A study of non-equilibrium wave groups in two-phase flow in high-contrast porous media with relative permeability hysteresis[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 127: 107552. DOI: 10.1016/j.cnsns.2023.107552.
[25] DA SILVA D A R, HERNANDEZ J A M, BARILLAS J L M. Relative permeability hysteresis analysis in a reservoir with characteristics of the Brazilian pre-salt[J]. Research, Society and Development, 2023, 12(2): e24712239842. DOI: 10.33448/rsd-v12i2.39842.
[26] BAHRAMI M, IZADI AMIRI E, ZIVAR D, AYATOLLAHI S, MAHANI H. Challenges in the simulation of underground hydrogen storage: a review of relative permeability and hysteresis in hydrogen-water system[J]. Journal of Energy Storage, 2023, 73(Part B): 108886. DOI: 10.1016/j.est.2023.108886.
[27] BO Z K, BOON M, HAJIBEYGI H, HURTER S. Impact of experimentally measured relative permeability hysteresis on reservoir-scale performance of underground hydrogen storage (UHS)[J]. International Journal of Hydrogen Energy, 2023, 48(36): 13527-13542. DOI: 10.1016/j.ijhydene.2022.12.270.

相似文献/References:

[1]洪伟民,俞欣然,李玉星.含水层地下储氢性能数值模拟[J].油气储运,2024,43(08):1.
 HONG Weimin,YU Xinran,LI Yuxing.Numerical simulation of underground hydrogen storage performance in aquifers[J].Oil & Gas Storage and Transportation,2024,43(10):1.

备注/Memo

洪伟民,男,1999年生,在读硕士生,2022年毕业于浙江海洋大学油气储运工程专业,现主要从事含水层地下储氢渗流模拟方向的研究工作。地址:山东省青岛市黄岛区长江西路66号,266580。电话:19862217176。Email:z22060049@s.upc.edu.cn
通信作者:俞欣然,女,1994年生,副教授,2021年博士毕业于卡尔加里大学化学与石油工程专业,现主要从事油气藏及含水层储气库渗流力学方向的研究工作。地址:山东省青岛市黄岛区长江西路66号,266580。电话:13775799377。Email:joyyu94@163.com
基金项目:国家自然科学基金青年项目“页岩储层压裂液渗吸、返排机理及多尺度耦合流动机制表征方法的研究”,52204039;国家自然科学基金青年项目“CO2吞吐过程中溶解扩散及其对页岩油的萃取/竞争吸附耦合作用机理研究”,52304059。
· Received: 2024-06-22 · Revised: 2024-08-22 · Online: 2024-08-30

更新日期/Last Update: 2024-10-25