网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
[1] GIRSHICK R, DONAHUE J, DARRELL T, MALIK J. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Columbus: 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] WEI L,DRAGOMIR A,DUMITRU E,CHRISTIAN S, SCOTT R,CHENG-YANG F,et al. SSD: Single Shot MultiBox Detector[J].Springer, Cham, 2016: 21-37. DOI:10.1007/978-3-319-46448-0_2.
[3] GIRSHICK R. Fast R-CNN[C]. Santiago: 2015 IEEE International Conference on Computer Vision (ICCV), 2015:1440-1448.
[4] REN S Q, HE K M, GIRSHICK R, SUN J. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[5] 刘德祥,梁苗,王钰棋.改进Faster-RCNN的工程车辆识别方法[J]. 城市勘测,2023(1):110-113. 10.3969/j.issn.1672-8262. 2023.01.029. LIU D X, LIANG M, WANG Y Q. Improved Faster-RCNN method for engineering vehicle detection[J]. Urban Geotechnical Investigation & Surveying, 2023(1): 110-113.
[6] 周斌,苏鹏,高鹏.基于改进YOLOv3算法的挖掘机检测方法[J]. 数字制造科学,2022,20(2):141-145. 10.3963/j.issn.1672-3236.2022.02.012. ZHOU B, SU P, GAO P. Excavator detection method based on improved algorithm of YOLOv3[J]. Digital Manufacture Science, 2022, 20(2): 141-145.
[7] 张旭天.基于深度学习的工程车辆检测与追踪[D].石家庄:石家庄铁道大学,2021. ZHANG X T. Construction vehicle detection and tracking based on deep learning[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021.
[8] REDMON J, DIVVALA S, GIRSHICK R, FARHADI A. You only look once: unified, real-time object detection[C]. Las Vegas: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[9] 刘先禄.基于深度卷积神经网络的小目标检测[D].淮南:安徽理工大学,2022. LIU X L. Small object detection based on deep convolutional neural networks[D]. Huainan: Anhui University of Science and Technology, 2022.
[10] 刘传洋,吴一全.基于深度学习的输电线路视觉检测方法研究进展[J].中国电机工程学报,2023,43(19):7423-7445. 10.13334/j.0258-8013.pcsee.221139. LIU C Y, WU Y Q. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43(19): 7423-7445.
[11] 陈业红,姜国龙,褚云飞,张慧仪,张璐,吴朝军.基于锚框的深度学习物体目标检测算法概览[J].微电子学与计算机, 2021,39(7):12-23. 10.19304/J.ISSN1000-7180.2021. 1340. CHEN Y H, JIANG G L, CHU Y F, ZHANG H Y, ZHANG L, WU C J. An overview of object detection algorithms of deep learning rely on anchor box[J]. Microelectronics & Computers, 2021, 39(7): 12-23.
[12] 何幸,黄永明,朱勇.基于改进YOLOv5的路面坑洼检测方法[J/OL].电子科技:1-8[2024-07-15]. https://doi.org/10.16180/j. cnki.issn1007-7820.2024.07.007. 10.16180/j.cnki.issn1007-7820. 2024.07.007. HE X, HUANG Y M, ZHU Y. Pavement pothole detection method based on improved YOLOv5[J/OL]. Electronic Science and Technology: 1-8[2024-07-15]. https://doi.org/10.16180/j.cnki.issn1007-7820.2024.07.007.
[13] 邵延华,张铎,楚红雨,张晓强,饶云波.基于深度学习的YOLO目标检测综述[J].电子与信息学报,2022,44(10):3697-3708. 10.11999/JEIT210790. SHAO Y H, ZHANG D, CHU H Y, ZHANG X Q, RAO Y B. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10):3697-3708.
[14] ZHANG H Y, CISSE M, DAUPHIN Y N, LOPEZ-PAZ D. Mixup: beyond empirical risk minimization[EB/OL]. (2018-04-27) [2024-07-15]. https://arxiv.org/abs/1710.09412.
[15] 王宇博,马廷淮,陈光明.基于改进YOLOv5算法的农田杂草检测[J]. 中国农机化学报,2023,44(4):167-173. 10.13733/j.jcam.issn.2095-5553.2023.04.023. WANG Y B, MA T H, CHEN G M. Weeds detection in farmland based on a modified YOLOv5 algorithm[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4):167-173.
[16] 张立艺,武文红,牛恒茂,石宝,段凯博,苏晨阳.深度学习中的安全帽检测算法应用研究综述[J].计算机工程与应用,2022,58(16):1-17. 10.3778/j.issn.1002-8331.2203-0580. ZHANG L Y, WU W H, NIU H M, SHI B, DUAN K B, SU C Y. Summary of application research on helmet detection algorithm based on deep learning[J]. Computer Engineering and Applications, 2022, 58(16): 1-17.
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. Salt Lake City: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[18] WANG Q L, WU B G, ZHU P F, LI P H, ZUO W M, HU Q H. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. Seattle: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:11531-11539.
[19] WOO S, PARK J, LEE J Y, KWEON I S. CBAM:convolutional block attention module[C]. Munich: Computer Vision–ECCV 2018, 2018: 3-19.
[20] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]. Nashville: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13708-13717.
[21] 张宸嘉,朱磊,俞璐.卷积神经网络中的注意力机制综述[J].计算机工程与应用,2021,57(20):64-72. 10.3778/j.issn.1002-8331.2105-0135. ZHANG C J, ZHU L, YU L. Review of attention mechanism in convolutional neural networks[J]. Computer Engineering and Applications, 2021, 57(20): 64-72.
[22] HUANG C, YANG S Y, LUO Y G, WANG Y S, LIU Z. Visual detection and image processing of parking space based on deep learning[J]. Sensors, 2022, 22(17): 6672. DOI: 10.3390/s22176672.
[23] MENG L L, CUI X, LIU R, ZHENG Z, SHAO H L, LIU J X, et al. Research on metallurgical saw blade surface defect detection algorithm based on SC-YOLOv5[J]. Processes, 2023, 11(9): 2564. DOI: 10.3390/pr11092564.
[24] REZATOFIGHI H, TSOI N, GWAK J Y, SADEGHIAN A, REID I, SAVARESE S. Generalized intersection over union: a metric and a loss for bounding box regression[C]. Long Beach:2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 658-666.
[25] ZHENG Z H, WANG P, LIU W, LI J Z, YE R G, REN D W. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. DOI: 10.1609/aaai.v34i07.6999.
[26] 周秦汉,王振.基于多尺度特征增强卷积神经网络遥感目标检测算法[J].电光与控制,2022,29(11):74-81. 10.3969/j.issn.1671-637X.2022.11.013. ZHOU Q H, WANG Z. A remote sensing target detection algorithm based on multi-scale feature enhancement CNNs[J]. Electronics Optics & Control, 2022, 29(11): 74-81.
[27] ZHANG Y F, REN W Q, ZHANG Z, JIA Z, WANG L, TAN T N. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157. DOI:10.1016/j.neucom.2022.07.042.
[28] 王素珍,吕基岳,邓成禹,葛润东,李浩儒. 基于改进YOLOv5的钢铁表面缺陷检测算法[J].国外电子测量技术,2023, 42(10):43-50. 10.19652/j.cnki.femt.2305102. WANG S Z, LV J Y, DENG C Y, GE R D, LI H R. Improved YOLOv5-based surface defect detection algorithm for steel[J].Electronic Measurement Technology, 2023, 42(10):43-50.
[1]孙卉梅 刘路 王德刚 王太勇.面向高后果区工程车辆视觉检测的YOLO-MMCE算法[J].油气储运,2024,43(09):1.
SUN Huimei,LIU Lu,WANG Degang,et al.An Improved YOLOv5 Algorithm for Visual Detection of Engineering Vehicles in High Consequence Areas[J].Oil & Gas Storage and Transportation,2024,43(09):1.
孙卉梅,女,2000年生,在读硕士生,2022年毕业于山东工商学院电子信息工程专业,现主要从事机器视觉方向的研究工作。地址:天津市河西区大沽南路1310号,300222。电话:17616239629。Email:17616239629@163.com
通信作者:刘路,男,1982年生,高级工程师,2011年博士毕业于天津大学精密仪器及机械专业,现主要从事机器视觉与数字信号处理方向的研究工作。地址:天津市河西区大沽南路1310号,300222。电话:13722655164。Email:lordman1982@163.com
基金项目:国家自然科学基金资助项目“基于泛信息融合的智能制造系统状态感知与虚拟维护”,51975402。
· Received: 2023-11-02 · Revised: 2023-11-28 · Online: 2024-06-26