[1]崔忠浩,刘艳贺,王海涛,等.X80管道环焊缝GTN损伤模型参数标定及应用[J].油气储运,2024,43(09):1022-1030.[doi:10.6047/j.issn.1000-8241.2024.09.007]
 CUI Zhonghao,LIU Yanhe,WANG Haitao,et al.Parameter calibration and application of GTN damage model for girth weld in X80 pipeline[J].Oil & Gas Storage and Transportation,2024,43(09):1022-1030.[doi:10.6047/j.issn.1000-8241.2024.09.007]
点击复制

X80管道环焊缝GTN损伤模型参数标定及应用

参考文献/References:

[1] 陈峥嵘,齐宇,韩磊,房茂军,王波,谢昕,等.非均质致密储层水平井分段压裂裂缝扩展模拟[J].大庆石油地质与开发,2024, 43(2):53-60. 10.19597/j.issn.1000-3754.202302019. CHEN Z R, QI Y, HAN L, FANG M J, WANG B, XIE X, et al. Fracture propagation simulation of horizontal well staged fracturing in heterogeneous tight reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(2): 53-60.
[2] 杨越,李逸涵,杨万欢,黎军顽,钟巍华,宁广胜,等.小尺寸CT试样断裂行为的GTN细观损伤模型研究[J].原子能科学技术, 2024,58(2):411-420. 10.7538/yzk.2023.youxian.0279. YANG Y, LI Y H, YANG W H, LI J W, ZHONG W H, NING G S, et al. Study on fracture behavior of mini-CT specimen based on GTN mesoscopic damage model[J]. Atomic Energy Science and Technology, 2024, 58(2): 411-420.
[3] 杨祯.基于Gurson模型的高强钢塑性断裂行为研究[D].天津:天津大学,2011. YANG Z. Study on ductile fracture of high strength steel based on Gurson model[D]. Tianjin: Tianjin University, 2011.
[4] 马剑林,葛华,甄莹,方迎潮,蒋毅,崔富凯,等.基于损伤力学的全尺寸天然气管道断裂韧性评估方法[J].中国石油大学学报(自然科学版),2021,45(4):153-160. 10.3969/j.issn.1673-5005. 2021.04.019. MA J L, GE H, ZHEN Y, FANG Y C, JIANG Y, CUI F K, et al. A damage mechanics based evaluation method for fracture toughness of full-scaled gas pipelines[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 153-160.
[5] STEGLICH D, SIEGMUND T, BROCKS W. Micromechanical modeling of damage due to particle cracking in reinforced metals[J]. Computational Materials Science, 1999, 16(1/2/3/4): 404-413. DOI:10.1016/S0927-0256(99)00083-X.
[6] RAKIN M, CVIJOVIC Z, GRABULOV V, PUTIC S, SEDMAK A. Prediction of ductile fracture initiation using micromechanical analysis[J]. Engineering Fracture Mechanics, 2004, 71(4/5/6): 813-827. DOI: 10.1016/S0013-7944(03)00013-4.
[7] 吴义.基于损伤的7075-T6铝合金HFQ工艺成形性实验研究[D].大连:大连理工大学,2017. WU Y. Experimental study on formability of 7075-T6 aluminum alloy HFQ based on damage[D]. Dalian: Dalian University of Technology, 2017.
[8] 梁耀壮.基于修正GTN模型的铜镍锡合金斜轧穿孔数值模拟和工艺优化[D].太原:中北大学,2023. LIANG Y Z. Numerical simulation and process optimization of cross rolling perforation of Cu-6Ni-6Sn alloy based on modified GTN model[D]. Taiyuan: North University of China, 2023.
[9] 曹秒艳,左苗苗,王鹏,郝海滨,赵长财,李建超.基于GTN模型的镁合金异形件颗粒介质成形[J].中国有色金属学报,2018, 28(12):2413-2421. 10.19476/j.ysxb.1004.0609.2018.12.03. CAO M Y, ZUO M M, WANG P, HAO H B, ZHAO C C, LI J C. Solid granules medium forming of magnesium alloy special shaped part based on GTN model[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(12): 2413-2421.
[10] ZHANG Z L, THAULOW C, ?DEG?RD J. A complete Gurson model approach for ductile fracture[J]. Engineering Fracture Mechanics, 2000, 67(2): 155-168. DOI: 10.1016/S0013-7944(00)00055-2.
[11] CHHIBBER R, ARORA N, GUPTA S R, DUTTA B K. Estimation of Gurson material parameters in bimetallic weldments for the nuclear reactor heat transport piping system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(12): 2331-2349. DOI: 10.1243/09544062JMES1001.
[12] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth: Part I: Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15. DOI: 10.1115/1.3443401.
[13] TVERGAARD V. Influence of void nucleation on ductile shear fracture at a free surface[J]. Journal of the Mechanics and Physics of Solids, 1982, 30(6): 399-425. DOI: 10.1016/0022-5096(82)90025-4.
[14] TVERGAARD V. Influence of voids on shear band instabilities under plane strain conditions[J]. International Journal of Fracture, 1981, 17(4): 389-407. DOI: 10.1007/BF00036191.
[15] TVERGAARD V, NEEDLEMAN A, LO K K. Flow localization in the plane strain tensile test[J]. Journal of the Mechanics and Physics of Solids, 1981, 29(2): 115-142. DOI:10.1016/0022-5096(81)90019-3.
[16] TVERGAARD V, NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169. DOI: 10.1016/0001-6160(84)90213-X.
[17] 匡锐,巩红涛,刘嘉欣,张威,李明,邓雪涛,等.基于GTN模型的含缺陷球墨铸铁力学行为分析[J].热加工工艺,2023, 52(11):131-135. 10.14158/j.cnki.1001-3814.20220307. KUANG R, GONG H T, LIU J X, ZHANG W, LI M, DENG X T, et al. Analysis of mechanical behavior of ductile iron with defects based on GTN model[J]. Hot Working Technology, 2023, 52(11): 131-135.
[18] WANG Y B, ZHANG C S, MENG Z J, CHEN L, ZHAO G Q. A novel three-dimensional M-K model by integrating GTN model for accurately identifying limit strains of sheet metal[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 1953-1962. DOI: 10.1016/S1003-6326(23)66235-1.
[19] 姚冉. 6005A铝合金热成形实验与数值模拟研究[D].唐山:华北理工大学,2022. YAO R. Research on hot forming experiment and numerical simulation of 6005A aluminum alloy[D]. Tangshan: North China University of Science and Technology, 2022.
[20] 王江超,卓子超.基于GTN损伤模型的Q690钢及其对接接头断裂性能评估[J].中国舰船研究,2022,17(2):142-147. 10.19693/j.issn.1673-3185.02237. WANG J C, ZHUO Z C. Fracture performance assessment of Q690 steel and its butt welded joint based on GTN damage model[J]. Chinese Journal of Ship Research, 2022, 17(2): 142-147.
[21] 赵雷,王逊,徐连勇,韩永典.基于GTN模型的小冲孔高温拉伸性能表征[J].天津大学学报(自然科学与工程技术版), 2022,55(3):283-290. 10.11784/tdxbz202009062. ZHAO L, WANG X, XU L Y, HAN Y D. Characterization of high-temperature tensile properties of small punch test based on the GTN Model[J]. Journal of Tianjin University (Science and Technology), 2022, 55(3): 283-290.
[22] 孙权,鹿业波,陈建钧.基于响应面法剪切修正GTN模型损伤参数的确定[J].机械强度,2019,41(6):1460-1465. 10.16579/j.issn.1001.9669.2019.06.029. SUN Q, LU Y B, CHEN J J. Determination of damage parameters of shear modified GTN model by response surface method[J]. Journal of Mechanical Strength, 2019, 41(6): 1460-1465.
[23] 吕正芳.双相特征X80管线钢塑性损伤行为研究[D].秦皇岛:燕山大学,2022. LYU Z F. Research on plastic damage behavior of X80 pipeline steel with dual phase characteristics[D]. Qinhuangdao: Yanshan University, 2022.
[24] 方剑,邱保文,袁泽喜. X80钢三点弯曲裂纹扩展试验及有限元模拟[J].兵器材料科学与工程,2020,43(3):99-103. 10.14024/j.cnki.1004-244x.20200115.002. FANG J, QIU B W, YUAN Z X. Crack propagation of three-point bending test and finite element simulation for steel X80[J]. Ordnance Material Science and Engineering, 2020, 43(3): 99-103.
[25] 王旭.高钢级管道环焊接头断裂评估方法研究[D].北京:中国石油大学(北京),2021. WANG X. The study of fracture assessment methods for high-grade girth welded pipes[D]. Beijing: China University of Petroleum (Beijing), 2021.
[26] 陆敏捷.基于压痕法的X80管线钢断裂韧性研究[D].青岛:中国石油大学(华东),2020. LU M J. Fracture toughness of X80 pipeline steel investigation by indentation method[D]. Qingdao: China University of Petroleum (East China), 2020.
[27] 张宏,吴锴,冯庆善,隋永莉,王东营,戴联双,等.高钢级管道环焊接头力学性能与适用性评价研究进展[J].油气储运,2022, 41(5):481-497. 10.6047/j.issn.1000-8241.2022.05.001. ZHANG H, WU K, FENG Q S, SUI Y L, WANG D Y, DAI L S, et al. State of the art on mechanical properties and fitness-for-service assessment of high-grade pipeline girth weld[J]. Oil &Gas Storage and Transportation, 2022, 41(5): 481-497.
[28] ZHEN Y, LI X Y, CAO Y G, ZHANG S H. A novel method to determine critical CTOA directly by load-displacement curve[J]. Engineering Fracture Mechanics, 2020, 230: 107013. DOI:10.1016/j.engfracmech.2020.107013.

相似文献/References:

[1]隋永莉 王鹏宇.中俄东线天然气管道黑河—长岭段环焊缝焊接工艺[J].油气储运,2020,39(09):961.[doi:10.6047/j.issn.1000-8241.2020.09.001]
 SUI Yongli,WANG Pengyu.Girth welding technology used in Heihe-Changling Section of China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2020,39(09):961.[doi:10.6047/j.issn.1000-8241.2020.09.001]
[2]张宏,吴锴,冯庆善,等.高钢级管道环焊接头力学性能与适用性评价研究进展[J].油气储运,2022,41(05):481.[doi:10.6047/j.issn.1000-8241.2022.05.001]
 ZHANG Hong,WU Kai,FENG Qingshan,et al.State of the art on mechanical properties and fitness-for-service assessment of high-grade pipeline girth weld[J].Oil & Gas Storage and Transportation,2022,41(09):481.[doi:10.6047/j.issn.1000-8241.2022.05.001]
[3]程凡菊,李坤,丁融,等.X80管线钢矫顽力与应力关系[J].油气储运,2022,41(11):1332.[doi:10.6047/j.issn.1000-8241.2022.11.013]
 CHENG Fanju,LI Kun,DING Rong,et al.Relationship between coercivity and stress of X80 pipeline steel[J].Oil & Gas Storage and Transportation,2022,41(09):1332.[doi:10.6047/j.issn.1000-8241.2022.11.013]
[4]罗志立,隋永莉.油气管道环焊缝自动焊未熔合影响因素[J].油气储运,2023,42(10):1166.[doi:10.6047/j.issn.1000-8241.2023.10.010]
 LUO Zhili,SUI Yongli.Factors influencing incomplete fusion in automatic girth welding of oil and gas pipelines[J].Oil & Gas Storage and Transportation,2023,42(09):1166.[doi:10.6047/j.issn.1000-8241.2023.10.010]
[5]李加庆 何帅震 赵子峰 冯智雨 尹鹏博 滕霖 江莉龙.水-氧-应力关联作用对X80管线钢液氨应力腐蚀行为的影响[J].油气储运,2025,44(03):1.
 LI Jiaqing,HE Shuaizhen,ZHAO Zifeng,et al.The Influence of Water-Oxygen-Stress Interaction on the Stress Corrosion Behavior of Liquid Ammonia in X80 Pipeline Steel[J].Oil & Gas Storage and Transportation,2025,44(09):1.
[6]李加庆,何帅震,赵子峰,等.水-氧-应力联合作用对X80液氨管道应力腐蚀的影响实验[J].油气储运,2025,44(03):271.[doi:10.6047/j.issn.1000-8241.2025.03.003]
 LI Jiaqing,HE Shuaizhen,ZHAO Zifeng,et al.Water-oxygen-stress coupled effects on liquid ammonia stress corrosion behavior in X80 pipeline steel[J].Oil & Gas Storage and Transportation,2025,44(09):271.[doi:10.6047/j.issn.1000-8241.2025.03.003]
[7]崔忠浩,刘艳贺,王海涛,等.X80管道环焊缝GTN损伤模型参数标定及应用[J].油气储运,2024,43(09):1.
 CUI Zhonghao,LIU Yanhe,WANG Haitao,et al.Parameter calibration and application of GTN damage model for X80 pipeline girth weld[J].Oil & Gas Storage and Transportation,2024,43(09):1.

备注/Memo

崔忠浩,男,1999年生,在读硕士生,2021年毕业于河北科技大学车辆工程专业,现主要从事油气管道环焊缝应变容量预测技术方向的研究工作。地址:北京市朝阳区和平街西苑2号,100029。电话:17812372062。Email:czh002799@163.com
通信作者:刘艳贺,男,1989年生,工程师,2014年硕士毕业于武汉科技大学冶金工程专业,现主要从事压力管道载荷计算与评价方向的研究工作。地址:北京市朝阳区和平街西苑2号,100029。电话:15541123302。Email:liuyanhe6@163.com
基金项目:中国特种设备检测研究院科研基金研究项目“高钢级天然气管道焊接及检测评价研究”,2020内02。
· Received: 2023-10-09 · Revised: 2023-11-15 · Online: 2024-06-20

更新日期/Last Update: 2024-09-25