[1]黄晓辉,毕宗岳,赵西岐,等.超临界CO2输送用L450M钢级HFW焊管开发[J].油气储运,2024,43(05):552-560.[doi:10.6047/j.issn.1000-8241.2024.05.008]
 HUANG Xiaohui,BI Zongyue,ZHAO Xiqi,et al.Development of L450M HFW pipes for supercritical CO2 transmission[J].Oil & Gas Storage and Transportation,2024,43(05):552-560.[doi:10.6047/j.issn.1000-8241.2024.05.008]
点击复制

超临界CO2输送用L450M钢级HFW焊管开发

参考文献/References:

[1] 张强,杨玉锋,张学鹏,刘硕,毕武喜,张希祥,等.超临界二氧化碳管道完整性管理技术发展现状与挑战[J].油气储运,2023,42(2):152-160. 10.6047/j.issn.1000-8241.2023.02.004. ZHANG Q,YANG Y F,ZHANG X P,LIU S,BI W X,ZHANG X X,et al. Technology status and challenge of integrity management of supercritical carbon dioxide pipeline[J]. Oil &Gas Storage and Transportation,2023,42(2): 152-160.
[2] 欧阳欣,李鹤,闫锋,李胜男,池强.输送工艺参数对密相/超临界CO2管道止裂韧性的影响[J].焊管,2023,46(6):1-6. 10.19291/j.cnki.1001-3938.2023.06.001. OUYANG X,LI H,YAN F,LI S N,CHI Q. Influence of transmission process parameters on crack arresting toughness of dense phase/supercritical CO2 pipeline[J]. Welded Pipe and Tube,2023,46(6): 1-6.
[3] LU H F,MA X,HUANG K,FU L D,AZIMI M. Carbon dioxide transport via pipelines: a systematic review[J]. Journal of Cleaner Production,2020,266: 121994. DOI: 10.1016/j.jclepro.2020.121994.
[4] SIMION P,DIA V,ISTRATE B,MUNTEANU C. Controlling and monitoring of welding parameters for micro-alloyed steel pipes produced by high frequency electric welding[J]. Advanced Material Research,2014,1036: 464-469. DOI: 10.4028/www. scientific.net/AMR.1036.464.
[5] MAZZOLDI A,OLDENBURG C M. Leakage risk assessment of CO2 transportation by pipeline at the Illinois Basin Decatur Project,Decatur,Illinois: LBNL-6540E[R]. Berkeley: Lawrence Berkeley National Laboratory,2013: 1164323.
[6] ACEVEDO W,ARTHUR C,VAN DER LEE J. A dynamic simulation to aid design of shell’s CCS quest project’s multi-stage compressor shutdown system[M]//WU Y,CARROLL J J,HU Y L. The Three Sisters: Acid Gas Injection,Carbon Capture and Sequestration,and Enhanced Oil Recovery. Beverly,MA:Scrivener Publishing LLC,2019: 193-218.
[7] COLE S,ITANI S. The Alberta carbon trunk line and the benefits of CO2[J]. Energy Procedia,2013,37: 6133-6139. DOI:10.1016/j.egypro.2013.06.542.
[8] AHMAD M,LOWESMITH B,DE KOEIJER G,NILSEN S,TONDA H,SPINELLI C,et al. COSHER joint industry project: Large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control,2015,37: 340-353. DOI: 10.1016/j.ijggc.2015.04.001.
[9] DI BIAGIO M,LUCCI A,MECOZZI E,SPINELLI C M. Fracture propagation prevention on CO2 pipelines: full scale experimental testing and verification approach[C]. Berlin:Pipeline Technology Conference 2017,2017: 1-17.
[10] LINTON V,LEINUM B H,NEWTON R,FYRILEIV O. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines: Part 1: project overview and outcomes of test 1[C]. Calgary: 2018 12th International Pipeline Conference,2018: V003T05A008.
[11] 吴文,钟桂香,黄卫锋.某X80钢级CO2输送管道断裂事故调查分析情况介绍[J].焊管,2023,46(12):64-71. 10.19291/j.cnki.1001-3938.2023.12.011. WU W ,ZHONG G X ,HUANG W F. Incident Investigation and Analysis of a X80 CO2 Transportation Pipeline Rupture[J]. Welded Pipe And Tube,2023,46(12): 64-71.
[12] CHENG A,CHEN N Z. Structural integrity assessment for deep-water subsea pipelines[J]. International Journal of Pressure Vessels and Piping,2022,199: 104711. DOI:10.1016/j. ijpvp. 2022. 104711.
[13] MOHITPOUR M,SEEVAM P,BOTROS K K,ROTHWELL B,ENNIS C. Pipeline transportation of carbon dioxide containing impurities[M]. New York: ASME Press,2012: 1-480.
[14] GRUBEN G,MACDONALD K,MUNKEJORD S T,SKARSV?G H L,DUMOULIN S. Pipeline fracture control concepts for Norwegian offshore carbon capture and storage[C]. Virtual: 2020 13th International Pipeline Conference,2020:V003T05A007.
[15] 张新民,丁辉,王海锋,褚程国,郝向利.海底管线用X65钢级Φ610 mm×20.6 mm HFW钢管批量生产[J].焊管,2019,42(1):55-58. 10.19291/j.cnki.1001-3938.2019.1.010. ZHANG X M,DING H,WANG H F,CHU C G,HAO X L. Mass production of submarine pipelines with X65 grade Φ610 mm× 20.6 mm HFW steel pipe[J]. Welded Pipe and Tube,2019,42(1): 55-58.
[16] 田鹏.高频焊管焊接工艺优化及综合性能评价方法的研究[D].秦皇岛:燕山大学,2019. TIAN P. Study on process optimization and evaluation method of comprehensive performance for high frequency welded pipes[D]. Qinhuangdao: Yanshan University,2019.
[17] 孙磊磊,屈献永,郑磊. X65MO小直径厚壁HFW海底输送管研制[J].焊管,2024,47(1):32-38. 10.19291/j.cnki.1001-3938. 2024.01.006. SUN L L,QU X Y,ZHENG L.Development of X65MO small diameter thick wall HFW offshore linepipe[J]. Welded Pipe And Tube,2024,47(1): 32-38.
[18] EFIMOV I V,STEPANOV P P,SOROKIN A E,BAGMET O A,KRASNOV A V,EFRON L I. Influence of high-frequency welding production parameters on microstructure and cold resistance of small and medium diameter steel pipe welded joints[J]. Metallurgist,2023,67(2): 209-222. DOI: 10.1007/s11015-023-01505-4.
[19] 左兰兰. HFW焊管焊缝点状缺陷产生原因及预防措施[J].焊管,2023,46(1):62-68. 10.19291/j.cnki.1001-3938.2023. 01.011. ZUO L L. The causal analysis and preventive measures of HFW pipe weld spot defect[J]. Welded Pipe and Tube,2023,46(1):62-68.
[20] 胡日荣,李殿杰,张春林,王金飞,韩宝云,张启富. HFW典型成型技术对比研究[J].焊管,2017,40(6):38-46,52. 10.19291/j.cnki.1001-3938.2017.06.007. HU R R,LI D J,ZHANG C L,WANG J F,HAN B Y,ZHANG Q F. Comparative study on typical HFW forming technologies[J]. Welded Pipe and Tube,2017,40(6): 38-46,52.
[21] 陈浩明,闫光龙,郭彬,赵立波,陈文辉,侯永利,等.热轧卷板质量对HFW焊管成型及焊接的影响[J].焊管,2022,45(6):63-68. 10.19291/j.cnki.1001-3938.2022.06.011. CHEN H M,YAN G L,GUO B,ZHAO L B,CHEN W H,HOU Y L,et al. Influence of hot-rolled steel coil quality on HFW welded pipe forming and welding[J]. Welded Pipe and Tube,2022,45(6): 63-68.
[22] IGI S,YABUMOTO S,SADASUE T,TAJIKA H,OI K. Deformation capacity of weld seam of the high quality HFW linepipe[C]. St. John’s: ASME 2015 34th International Conference on Ocean,Offshore and Arctic Engineering,2015:V004T03A003.
[23] MATSUI Y,IIZUKA Y,OKABE T,INOUE T. Evaluation method for low temperature toughness of weld seam of HFW pipe based on the distribution of scattered type penetrator[J]. ISIJ International,2017,57(11): 2010-2015. DOI: 10.2355/isijinternational.ISIJINT-2017-092.
[24] 田鹏,徐凯,陆广平,齐桂英,王晓颖,肖福仁. API X52 HFW焊管质量的总体评价[J].焊管,2018,41(2):20-25,31. 10.19291/j.cnki.1001-3938.2018.02.005. TIAN P,XU K,LU G P,QI G Y,WANG X Y,XIAO F R. Comprehensive evaluation of API X52 HFW pipes[J]. Welded Pipe and Tube,2018,41(2): 20-25,31.
[25] 秦红英,张林森,王刚,肖虎.焊接工艺评定中不同标准对冲击试验的相关要求对比[J].焊管,2024,47(1):53-57. 10.19291/j.cnki.1001-3938.2024.01.009. QIN H Y,ZHANG L S,WANG G,XIAO H. Comparison of requirements of different standards for impact test in welding procedure qualification[J]. Welded Pipe And Tube,2024,47(1):53-57.

相似文献/References:

[1]蒋秀 屈定荣 刘小辉. 超临界CO2 管道输送与安全[J].油气储运,2013,32(8):809.[doi:10.6047/j.issn.1000-8241.2013.08.003]
 Jiang Xiu,Qu Dingrong,Liu Xiaohui.Supercritical CO2 pipeline transportation and safety[J].Oil & Gas Storage and Transportation,2013,32(05):809.[doi:10.6047/j.issn.1000-8241.2013.08.003]
[2]赖力,龙伟.超临界CO2 管道泄压过程中管内动态应力分布[J].油气储运,2018,37(3):276.[doi:10.6047/j.issn.1000-8241.2018.03.006]
 LAI Li,LONG Wei.Distribution of dynamic stress on the supercritical CO2 pipeline in the process of its pressure relief[J].Oil & Gas Storage and Transportation,2018,37(05):276.[doi:10.6047/j.issn.1000-8241.2018.03.006]
[3]张磊.超临界CO2 条件下温度对5 种典型钢腐蚀行为的影响[J].油气储运,2020,39(09):1031.[doi:10.6047/j.issn.1000-8241.2020.09.010]
 ZHANG Lei.Influence of temperature on 5 typical steel corrosion behavior under supercritical CO2 condition[J].Oil & Gas Storage and Transportation,2020,39(05):1031.[doi:10.6047/j.issn.1000-8241.2020.09.010]
[4]潘振,吴京京,陈轶男,等.基于LNG冷能利用的多联产系统模拟与性能优化[J].油气储运,2022,41(07):810.[doi:10.6047/j.issn.1000-8241.2022.07.008]
 PAN Zhen,WU Jingjing,CHEN Yi&apos,et al.Simulation and performance optimization of a poly-generation system based on LNG cold energy utilization[J].Oil & Gas Storage and Transportation,2022,41(05):810.[doi:10.6047/j.issn.1000-8241.2022.07.008]
[5]李欣泽 孙晨 张雪琴 邹炜杰 袁亮 熊小琴 邢晓凯 徐宁.新疆油田超临界CO2管道安全停输工艺边界范围确定[J].油气储运,2024,43(05):1.
 LI Xinze,SUN Chen,Zhang Xueqin,et al.Study on safe shutdown process boundary range of a supercritical CO2 pipeline in Xinjiang Oilfield[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[6]黄晓辉 毕宗岳 赵西岐 张锦刚 韦奉 王博玉 詹文文.超临界CO2输送用L450M钢级HFW焊管开发[J].油气储运,2024,43(05):1.
 HUANG Xiaohui,MAO Nongzhao,ZHAO Xiqi,et al.The Development of X65 Steel Grade HFW Welded Pipe For Supercritical Carbon Dioxide Transport[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[7]刘广瑜,支树洁,柳歆,等.CCUS超临界/密相CO2管道内腐蚀研究进展[J].油气储运,2024,43(05):510.[doi:10.6047/j.issn.1000-8241.2024.05.004]
 LIU Guangyu,ZHI Shujie,LIU Xin,et al.Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS[J].Oil & Gas Storage and Transportation,2024,43(05):510.[doi:10.6047/j.issn.1000-8241.2024.05.004]
[8]闫冰,史博会,陈俊文,等.地形起伏超临界CO2管道两端阀室放空动态模拟[J].油气储运,2024,43(05):561.[doi:10.6047/j.issn.1000-8241.2024.05.009]
 YAN Bing,SHI Bohui,CHEN Junwen,et al.Dynamic venting simulation of valve chambers at both ends of supercritical CO2 pipelines with topographic relief[J].Oil & Gas Storage and Transportation,2024,43(05):561.[doi:10.6047/j.issn.1000-8241.2024.05.009]
[9]李欣泽,孙晨,张雪琴,等.新疆油田超临界CO2管道安全停输工艺边界范围确定[J].油气储运,2024,43(05):579.[doi:10.6047/j.issn.1000-8241.2024.05.011]
 LI Xinze,SUN Chen,ZHANG Xueqin,et al.Establishing boundaries of safe shutdown process for supercritical CO2 pipeline of Xinjiang Oilfield Branch[J].Oil & Gas Storage and Transportation,2024,43(05):579.[doi:10.6047/j.issn.1000-8241.2024.05.011]
[10]张文辉,安国钰,熊小琴,等.超临界CO2管道阀室放空方案设计[J].油气储运,2024,43(07):749.[doi:10.6047/j.issn.1000-8241.2024.07.004]
 ZHANG Wenhui,AN Guoyu,XIONG Xiaoqin,et al.Venting design for block valve station of supercritical CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):749.[doi:10.6047/j.issn.1000-8241.2024.07.004]

备注/Memo

黄晓辉,男,1980年生,高级工程师,2006年硕士毕业于郑州大学材料学专业,现主要从事油气及新能源管材专业方向的研究工作。地址:陕西省宝鸡市渭滨区姜谭路9号,721008。电话:0917-3398021。Email:bsghxh02@cnpc.com.cn
基金项目:中国石油天然气股份有限公司重大科技项目“超临界二氧化碳长距离管输关键技术研究”,2021ZZ01-02。
· Received: 2023-12-04 · Revised: 2024-01-26 · Online: 2024-03-18

更新日期/Last Update: 2024-05-25