[1]陈兵,李磊磊,齐文娇.BTC方法应用于CO2管道止裂韧性计算的可行性[J].油气储运,2024,43(05):524-536.[doi:10.6047/j.issn.1000-8241.2024.05.005]
 CHEN Bing,LI Leilei,QI Wenjiao.Research progress of BTC method and feasibility of its application to calculate crack arrest toughness of CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):524-536.[doi:10.6047/j.issn.1000-8241.2024.05.005]
点击复制

BTC方法应用于CO2管道止裂韧性计算的可行性

参考文献/References:

[1] 胡其会,李玉星,张建,俞欣然,王辉,王武昌,等. “双碳”战略下中国CCUS技术现状及发展建议[J].油气储运,2022,41(4):361-371. 10.6047/j.issn.1000-8241.2022.04.001. HU Q H,LI Y X,ZHANG J,YU X R,WANG H,WANG W C,et al. Current status and development suggestions of CCUS technology in China under the “Double Carbon” strategy[J]. Oil & Gas Storage and Transportation,2022,41(4): 361-371.
[2] 钱媛,曹馨.基于文献计量的CCUS研究发展态势分析[J].工业安全与环保,2023,49(1):97-101,106. 10.3969/j.issn.1001-425X.2023.01.022. QIAN Y,CAO X. Development trend analysis of CCUS research based on bibliometrics[J]. Industrial Safety and Environmental Protection,2023,49(1): 97-101,106.
[3] 阳平坚,彭栓,王静,王强,任妮,宋维宁.碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J].中国环境科学,2021,44(1):404-416. 10.19674/j.cnki.issn1000-6923.20230815.001. YANG P J,PENG S,WANG J,WANG Q,REN N,SONG W N. Carbon capture,utilization and storage (CCUS) technology development status and application prospects[J]. Chinese Environmental Science,2021,44(1):404-416.
[4] 秦阿宁,吴晓燕,李娜娜,孙玉玲,陈方.国际碳捕集、利用与封存(CCUS)技术发展战略与技术布局分析[J].科学观察,2022,17(4):29-37. 10.15978/j.cnki.1673-5668.202204008. QIN A L,WU X Y,LI N N,SUN Y L,CHEN F. Analysis on international strategy and technology development of carbon capture,utilization and storage(CCUS)[J]. Science Focus,2022,17(4): 29-37.
[5] 陆诗建,张娟娟,杨菲,王风,刘苗苗,贡玉萍,等. CO2管道输送技术进展与未来发展浅析[J].南京大学学报(自然科学),2022,58(6):944-952. 10.13232/j.cnki.jnju.2022.06.002. LU S J,ZHANG J J,YANG F,WANG F,LIU M M,GONG Y P,et al. Progress and future development trend of CO2 pipeline transportation technology[J]. Journal of Nanjing University (Natural Science),2022,58(6): 944-952.
[6] 刘建武.二氧化碳输送管道工程设计的关键问题[J].油气储运,2014,33(4):369-373. 10.6047/j.issn.1000-8241.2014.04.006. LIU J W. Key issues related to engineering design of CO2 transportation pipeline[J]. Oil & Gas Storage and Transportation,2014,33(4): 369-373.
[7] MARTYNOV S,DOWELL N M,BROWN S,MAHGEREFTEH H. Assessment of integral Thermo-Hydraulic models for pipeline transportation of dense-phase and supercritical CO2[J]. Industrial &Engineering Chemistry Research,2015,54(34): 8587-8599. DOI:10.1021/acs.iecr.5b00851.
[8] CHEN L,YAN X Q,HU Y W,YANG K,YU S,YU J L,et al. Depressurization and heat transfer during leakage of supercritical CO2 from a pipeline[J]. Greenhouse Gases: Science and Technology,2022,12(5): 616-628. DOI: 10.1002/ghg.2173.
[9] 陈兵,康庆华,肖红亮.含杂质CO2管道输送泄漏扩散的数值模拟[J].安全与环境工程,2019,26(3):95-100. 10.13578/j.cnki.issn.1671-1556.2019.03.014. CHEN B,KANG Q H,XIAO H L. Numerical simulation of impurity CO2 leakage and diffusion during pipeline transportation[J]. Safety and Environmental Engineering,2019,26(3): 95-100.
[10] BARKER R,HUA Y,NEVILLE A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS): a review[J]. International Materials Reviews,2017,62(1): 1-31. DOI: 10.1080/09506608.2016.1176306.
[11] HEDLUND F H. The extreme carbon dioxide outburst at the Menzengraben potash mine 7 July 1953[J]. Safety Science,2012,50(3): 537-553. DOI: 10.1016/j.ssci.2011.10.004.
[12] 程浩力.国内外CO2管道设计规范要点[J].油气储运,2024,43(1):32-39. 10.6047/j.issn.1000-8241.2024.01.004. CHENG H L. Discussion on essential points in Chinese and foreign standards for CO2 pipeline design[J]. Oil & Gas Storage and Transportation,2024,43(1): 32-39.
[13] 张帆,林志坚,方飞.国内外碳捕集技术发展现状分析[J].能源化工,2022,43(5):13-19. 10.3969/j.issn.1006-7906.2022.05.003. ZHANG F,LIN Z J,FANG F. Analysis on the development status of carbon capture technology[J]. Energy Chemical Industry,2022,43(5): 13-19.
[14] HAN C H,ZAHID U,AN J,KIM K,KIM C. CO2 transport:design considerations and project outlook[J]. Current Opinion in Chemical Engineering,2015,10: 42-48. DOI: 10.1016/j.coche.2015.08.001.
[15] 任科.超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018. REN K. Study on theory and control method of supercritical carbon dioxide pipe fracture[D]. Xi'an: Xi'an Shiyou University,2018.
[16] 金峤,孙泽宇,孙威.内压波动下的CO2管道轴向表面裂纹疲劳扩展研究[J].工程力学,2015,32(5):84-93. 10.6052/j.issn.1000-4750.2013.11.1043. JIN Q,SUN Z Y,SUN W. Study on fatigue crack growth in CO2 pipelines with an axial surface crack under pulsating internal pressure[J]. Engineering Mechanics,2015,32(5):84-93.
[17] DUGSTAD A,HALSEID M,MORLAND B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines[J]. Energy Procedia,2013,37: 2877-2887. DOI:10.1016/j.egypro.2013.06.173.
[18] 殷布泽,黄维和,苗青,闫锋,欧阳欣,胡其会,等. CO2管道泄漏减压特性与裂纹扩展研究现状及发展趋势[J].油气储运,2023,42(9):1042-1054. 10.6047/j.issn.1000-8241.2023.09.008. YIN B Z,HUANG W H,MIAO Q,YAN F,OUYANG X,HU Q H,et al. Status and development trends of research on CO2 decompression characteristics and crack propagation[J]. Oil &Gas Storage and Transportation,2023,42(9): 1042-1054.
[19] ZHUANG Z,O'DONOGHUE P E. The recent development of analysis methodology for rapid crack propagation and arrest in gas pipelines[J]. International Journal of Fracture,2000,101(3): 269-290. DOI: 10.1023/A:1007614308834.
[20] 杨政,霍春勇,冯耀荣.天然气输送管线的止裂机理研究[J].焊管,2005,28(6):25-29. 10.3969/j.issn.1001-3938.2005.06.006. YANG Z,HUO C Y,FENG Y R. Anti-tearing mechanism study of gas transmission pipeline[J]. Welded Pipe and Tube,2005,28(6): 25-29.
[21] GOSWAMI S,ANITESCU C,CHAKRABORTY S,RABCZUK T. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture[J]. Theoretical and Applied Fracture Mechanics,2020,106: 102447. DOI: 10.1016/j.tafmec.2019.102447.
[22] RUDINGER G. Fundamentals of gas-particle flow[M]. Amsterdam: Elsevier,1980: 1-25.
[23] 孙明源. CO2输送管道裂纹扩展及止裂技术研究进展[J].安全、健康和环境,2023,23(11):40-47. 10.3969/j.issn.1672-7932.2023.11.008. SUN M Y. Research progress on crack propagation and crack arrest technology of CO2 transport pipeline[J]. Safety Health &Environment,2023,23(11): 40-47.
[24] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A,Containing Papers of a Mathematical or Physical Character,1921,221(582/593): 163-198. DOI: 10.1098/rsta.1921.0006.
[25] RUDINGER G,CHANG A. Analysis of nonsteady two-phase flow[J]. The Physics of Fluids,1964,7(11): 1747-1754. DOI:10.1063/1.2746772.
[26] MUNKEJORD S T,HAMMER M,L?vseth S W. CO2 transport: Data and models: A review[J]. Applied Energy,2016,169: 499-523.
[27] 徐源.含杂质超临界CO2管道裂纹延性扩展研究[D].西安:西安石油大学,2021. XU Y. Study on the crack ductility growth of impurity supercritical CO2 pipeline[D]. Xi'an: Xi'an Shiyou University,2021.
[28] RUDLAND D,SHIM D J,XU H,RIDER D,MINCER P,SHOEMAKER D,et al. First major improvements to the two-curve ductile fracture model-part I main body: 03-G78-01[R]. Columbus: Engineering Mechanics Corporation of Columbus,2007.
[29] 刘梦诗.胜利油田气态CO2管道输送瞬变特性及安全分析[D].青岛:中国石油大学(华东),2014. LIU M S. The transient characteristics and safety analysis of carbon dioxide gas pipelines in Shengli Oil Field[D]. Qingdao:China University of Petroleum (East China),2014.
[30] COSHAM A,EIBER R J. Fracture control in carbon dioxide pipelines: the effect of impurities[C]. Calgary: 2008 7th International Pipeline Conference,2008: 229-240.
[31] MAXEY W A. Fracture initiation,propagation and arrest[C]. Houston: 5th Symposium on Line Pipe Research,1974: L30174.
[32] WILKOWSKI G,RUDLAND D,XU H,SANDERSON N. Effect of grade on ductile fracture arrest criteria for gas pipelines[C]. Calgary: 2006 International Pipeline Conference,2006: 369-384.
[33] LEIS B N,EIBER R J,CARLSON L,GILROY-SCOTT A. Relationship between apparent (total) Charpy vee-notch toughness and the corresponding dynamic crack-propagation resistance[C]. Calgary: 1998 2nd International Pipeline Conference,1998: 723-731.
[34] LEIS B N. Arresting propagating shear in pipelines[J]. Steel in Translation,2015,45(1): 1-17. DOI: 10.3103/S096709121501009X.
[35] 李红克,张彦华.天然气管道延性断裂止裂控制技术进展[J].石油工程建设,2003,29(4):1-5. 10.3969/j.issn.1001-2206. 2003.04.001. LI H K,ZHANG Y H. The development of ductile fracture arrest control technique in natural gas pipelines[J]. Petroleum Engineering Construction,2003,29(4): 1-5.
[36] 涂圣文,帅健.高强度管线钢裂纹扩展速度的计算[J].油气储运,2015,34(4):383-387. 10.6047/j.issn.1000-8241.2015.04.008. TU S W,SHUAI J. Calculation of crack extension rate of high-strength pipeline steel[J]. Oil & Gas Storage and Transportation,2015,34(4): 383-387.
[37] 杨坤,池强,李鹤,张伟卫,霍春勇.高钢级天然气输送管道止裂预测模型研究进展[J].石油管材与仪器,2019,5(4):9-14. 10.19459/j.cnki.61-1500/te.2019.04.002. YANG K,CHI Q,LI H,ZHANG W W,HUO C Y. Research on the crack arrest prediction models and their progress for high grade steel of natural gas pipeline[J]. Petroleum Tubular Goods &Instruments,2019,5(4): 9-14.
[38] EIBER R J. Prediction steel: Grade dependent[J]. Oil and Gas Journal,2008,106(40): 70-73.
[39] 李红克,张彦华.天然气管道止裂韧性预测模型的统计分析[J]. 焊管,2003,26(6):9-13. 10.3969/j.issn.1001-3938. 2003.06.002. LI H K,ZHANG Y H. Statistic analysis of crack-arrest toughness models for natural-gas pipeline[J]. Welded Pipe and Tube,2003,26(6): 9-13.
[40] 霍春勇,李鹤林.西气东输二线延性断裂与止裂研究[J].金属热处理,2011,36(增刊1):4-9. 10.13251/j.issn.0254-6051.2011. s1.089. HUO C Y,LI H L. Ductile fracture arrest toughness of 2nd west-east gas pipeline[J]. Heat Treatment of Metals,2011,36(S1): 4-9.
[41] DUAN D M,ZHOU J. Speed dependent fracture toughness and the effect on fast ductile fracture propagation in gas pipelines[C]. Ottawa: The ICF 12th International Conference on Fracture,2009: 1-10.
[42] DUAN D M,ZHOU J,SHIM D J,WILKOWSKI G. Effect of fracture speed on ductile fracture resistance: part 2: Results and application[C]. Calgary: 2010 8th International Pipeline Conference,2010: 201-208.
[43] WOLODKO J,STEPHENS M. Applicability of existing models for predicting ductile fracture arrest in high pressure pipelines[C]. Calgary: 2006 International Pipeline Conference,2006: 115-123.
[44] DAVIS B J,MICHAL G,LU C,LINTON V. Separation characteristics of an X65 linepipe steel from laboratory-scale to full-scale fracture tests[C]. Virtual: 2020 13th International Pipeline Conference,2020: V003T05A006.
[45] 翟雁,郭晓波,丁再超,李志强.不同强度级别低合金高强钢疲劳断裂行为分析[J].塑性工程学报,2023,30(7):145-150. 10.3969/j.issn.1007-2012.2023.07.019. ZHAI Y,GUO X B,DING Z C,LI Z Q. Analysis of fatigue fracture behavior of low-alloy high-strength steel with different strength grades[J]. Journal of Plasticity Engineering,2023,30(7): 145-150.
[46] LEIS B N. Characterizing dynamic crack-resistance of pipelines using laboratory-scale practices[C]. Calgary: 2000 3rd International Pipeline Conference,2000: V001T02A026.
[47] WILKOWSKI G M,MAXEY W A,EIBER R J. Use of a brittle notch DWTT specimen to predict fracture characteristics of line pipe steels[C]. Houston: ASME 1977 Energy Technology Conference,1977: 18-22.
[48] MAKINO H,KUBO T,SHIWAKU T,ENDO S,INOUE T,KAWAGUCHI Y,et al. Prediction for crack propagation and arrest of shear fracture in ultra-high pressure natural gas pipelines[J]. ISIJ International,2001,41(4): 381-388. DOI:10.2355/isijinternational.41.381.
[49] 帅健,张宏,王永岗,戴诗亮.输气管道裂纹动态扩展及止裂技术研究进展[J].石油大学学报(自然科学版),2004,28(3):129-135. 10.3321/j.issn:1000-5870.2004.03.037. SHUAI J,ZHANG H,WANG Y G,DAI S L. Research advance of dynamic crack propagation and arrest techniques for gas transmission pipeline[J]. Journal of the University of Petroleum,China (Edition of Natural Science),2004,28(3):129-135.
[50] 李鹤,李洋,王鹏,霍春勇,冯耀荣,吉玲康. X80管线钢管动态裂纹扩展速度计算[J].压力容器,2013,30(2):33-35. 10.3969/j.issn.1001-4837.2013.02.005. LI H,LI Y,WANG P,HUO C Y,FENG Y R,JI L K. Calculation of dynamic crack propagation velocities for X80 line pipe[J]. Pressure Vessel Technology,2013,30(2): 33-35.
[51] 甄莹.基于裂纹尖端张开角的天然气管道止裂控制基础研究[D].青岛:中国石油大学(华东),2021. ZHEN Y. Basis research on crack arrest control of natural gas pipeline based on crack tip opening angle[D]. Qingdao: China University of Petroleum (East China),2021.
[52] 吕锦杰,赵军华,于培师.全尺寸X80天然气管道动态断裂研究[J].机械强度,2018,40(6):1485-1489. 10.16579/j.issn.1001.9669.2018.06.035. LYU J J,ZHAO J H,YU P S. Study of dynamic fracture of X80 natural gas pipeline[J]. Journal of Mechanical Strength,2018,40(6): 1485-1489.
[53] 张对红.基于裂纹尖端张开角的管道止裂控制研究进展[J].油气储运,2021,40(8):841-847.10.6047/j.issn.1000-8241. 2021.08.001. ZHANG D H. Research progress on arrest control of pipeline cracking based on crack tip opening angle[J]. Oil & Gas Storage and Transportation,2021,40(8): 841-847.
[54] 陈兵,肖红亮,王香增.气体杂质对管道输送CO2相态的影响[J].天然气化工(C1化学与化工),2017,42(6):89-94. 10.3969/j.issn.1001-9219.2017.06.020. CHEN B,XIAO H L,WANG X Z. Impact of gas impurities on CO2 phase state in pipeline transportation[J]. Natural Gas Chemical Industry,2017,42(6): 89-94.
[55] HU Q H,ZHANG N,LI Y X,WANG W C,ZHU J L,GONG J Y. A new model for calculation of arrest toughness in the fracture process of the supercritical CO2 pipeline[J]. ACS Omega,2021,6(26): 16804-16815. DOI: 10.1021/acsomega.1c01360.
[56] 陈兵,毕鉴,齐文娇,王香增,徐梦林.含杂质超临界CO2管道止裂分析及控制方案[J].西安石油大学学报(自然科学版),2024,39(1):106-113. 10.3969/j.issn.1673-064X.2024.01.013. CHEN B,BI J,QI W J,WANG X Z,XU M L. Crack propagation analysis and arresting control scheme of pipeline for transporting supercritical CO2 with impurities[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2024,39(1):106-113.
[57] EIBER B,CARLSON L,LEIS B. Fracture control for the alliance pipeline[C]. Calgary: 2000 3rd International Pipeline Conference,2000: V001T02A023.
[58] EIBER R J,BUBENIK T A,MAXEY W A. Fracture control technology for natural gas pipelines: AGA-94015614[R]. Arlington,VA: American Gas Association,Inc.,1993.
[59] BARNETT J,COOPER R. An operator’s perspective on fracture control in dense phase CO2 pipelines[C]. Calgary: 2016 11th International Pipeline Conference,2016: V003T05A013.
[60] AHMAD M,LOWESMITH B,DE KOEIJER G,NILSEN S,TONDA H,SPINELLI C,et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control,2015,37: 340-353. DOI: 10.1016/j.ijggc.2015.04.001.
[61] LINTON V,LEINUM B H,NEWTON R,FYRILEIV O. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines: Part 1: project overview and outcomes of test 1[C]. Calgary: 2018 12th International Pipeline Conference,2018: V003T05A008.
[62] MICHAL G,DAVIS B,?STBY E,LU C,R?NEID S. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines: Part 2: Is the BTCM out of touch with dense-phase CO2?[C]. Calgary: 2018 12th International Pipeline Conference,2018: V003T05A009.
[63] COSHAM A,EIBER R J,CLARK E B. GASDECOM:carbon dioxide and other components[C]. Calgary: 2010 8th International Pipeline Conference,2010: 777-794.
[64] 李玉星,王财林,胡其会,龚霁昱.含杂质超临界CO2管道减压波波速的预测模型[J].油气储运,2021,40(9):1027-1032. 10.6047/j.issn.1000-8241.2021.09.008. LI Y X,WANG C L,HU Q H,GONG J Y. Prediction model of decompression wave velocity in supercritical CO2 pipelines containing impurities[J]. Oil & Gas Storage and Transportation,2021,40(9): 1027-1032.
[65] 顾帅威,李玉星,滕霖,王财林,胡其会,张大同,等.小尺度超临界CO2管道小孔泄漏减压及温降特性[J].化工进展,2019,38(2):805-812. 10.16085/j.issn.1000-6613.2018-0961. GU S W,LI Y X,TENG L,WANG C L,HU Q H,ZHANG D T,et al. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes[J]. Chemical Industry and Engineering Progress,2019,38(2): 805-812.
[66] WANG C L,LI Y X,TENG L,GU S W,HU Q H,ZHANG D T,et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines[J]. Experimental Thermal and Fluid Science,2019,105: 77-84. DOI: 10.1016/j.expthermflusci.2019.03.014.
[67] DI BIAGIO M,LUCCI A,MECOZZI E,SPINELLI C M. Fracture propagation prevention on CO2 pipelines: full scale experimental testing and verification approach[C]. Berlin:Pipeline Technology Conference 2017,2017: 1-17.
[68] BOTROS K K,GEERLIGS J,ROTHWELL B,Robinson T. Measurements of decompression wave speed in binary mixtures of carbon dioxide and impurities[J]. Journal of Pressure Vessel Technology,2017,139(2): 021301. DOI: 10.1115/1.4034016.
[69] 刘丽艳,吴瑕.密相CO2输送管道的裂纹扩展推动力计算研究[J].机械强度,2017,39(6):1445-1449. 10.16579/j.issn.1001.9669.2017.06.031. LIU L Y,WU X. Driving force calculation for the fracture propagation of dense phase CO2 transmission pipeline[J]. Journal of Mechanical Strength,2017,39(6): 1445-1449.
[70] 池强,杨坤,李鹤,李炎华.高钢级管道全尺寸气体爆破试验技术研究[J].焊管,2019,42(7):78-82,89. 10.19291/j.cnki. 1001-3938.2019.7.009. CHI Q,YANG K,LI H,LI Y H. Research on full-scale gas blasting test technology for high-grade pipeline[J]. Welded Pipe and Tube,2019,42(7): 78-82,89.
[71] 李鹤,谢萍,庞艳凤,杨明,池强,霍春勇.全尺寸气体爆破试验用管道设计技术难点[J].石油管材与仪器,2020,6(1):32-35.10.19459/j.cnki.61-1500/te.2020.01.008. LI H,XIE P,PANG Y F,YANG M,CHI Q,HUO C Y. Technology problems of pipeline design for the full-scale burst testing[J]. Petroleum Tubular Goods & Instruments,2020,6(1):32-35.
[72] 李胜男,苗青,欧阳欣,李鹤,王俊,池强.密相/超临界CO2管道全尺寸爆破试验综述[J].石油管材与仪器,2023,9(1):16-22. 10.19459/j.cnki.61-1500/te.2023.01.003. LI S N,MIAO Q,OUYANG X,LI H,WANG J,CHI Q. Overview of full-scale burst test for dense phase/supercritical carbon dioxide pipeline[J]. Petroleum Tubular Goods &Instruments,2023,9(1): 16-22.
[73] 苗青.二氧化碳管道全尺寸爆破试验[J/OL].油气储运:1-10[2024-01-22]. http://kns.cnki.net/kcms/detail/13.1093. te.20240116.1932.006.html. MIAO Q. Full-scale burst tests of carbon dioxide pipeline[J/OL]. Oil & Gas Storage and Transportation: 1-10[2024-01-22]. http://kns.cnki.net/kcms/detail/13.1093.te.20240116.1932.006. html.
[74] MICHAL G,?STBY E,DAVIS B J,R?NEID S,LU C. An empirical fracture control model for dense-phase CO2 carrying pipelines[C]. Virtual: 2020 13th International Pipeline Conference,2020: V003T05A005.
[75] COSHAM A,JONES D G,ARMSTRONG K,ALLASON D,BARNETT J. Ruptures in gas pipelines,liquid pipelines and dense phase carbon dioxide pipelines[C]. Calgary: 2012 9th International Pipeline Conference,2012: 465-482.
[76] MARSILI D L,STEVIK G R. Reducing the risk of ductile fracture on the canyon reef carriers CO2 pipeline[C]. New Orleans: SPE Annual Technical Conference and Exhibition,1990: SPE-20646-MS.
[77] AURSAND E,DUMOULIN S,HAMMER M,LANGE H I,MORIN A,MUNKEJORD S T,et al. Fracture propagation control in CO2 pipelines: Validation of a coupled fluid-structure model[J]. Engineering Structures,2016,123: 192-212. DOI:10.1016/j.engstruct.2016.05.012.
[78] COSHAM A,JONES D G,ARMSTRONG K,ALLASON D,BARNETT J. Analysis of two dense phase carbon dioxide full-scale fracture propagation tests[C]. Calgary: 2014 10th International Pipeline Conference,2014: V003T07A003.
[79] COSHAM A,JONES D G,ARMSTRONG K,ALLASON D,BARNETT J. Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipe[C]. Calgary: 2016 11th International Pipeline Conference,2016:V003T05A012.
[80] MANNUCCI G,DEMOFONTI G. Control of ductile facture propagation in X80 gas linepipe[J]. Journal of Pipeline Engineering,2011,10(3): 133-145.
[81] 冯庆善.高钢级管道环焊接头强度匹配的探讨与思考[J].油气储运,2022,41(11):1235-1249. FENG Q S. Discussion and thinking of high-grade pipeline girth weld strength matching[J]. Oil & Gas Storage and Transportation,2022,41(11): 1235-1249.
[82] 张烈辉,曹成,文绍牧,赵玉龙,彭先,吴建发.碳达峰碳中和背景下发展CO2-EGR的思考[J].天然气工业,2023,43(1):13-22. 10. 3787/j.issn.1000-0976.2023.01.002. ZHANG L H,CAO C,WEN S M,ZHAO Y L,PENG X,WU J F. Thoughts on the developmengt of CO2-EGR under the background of carbon peak and carbon neutrality[J]. Natural Gas Industry,2023,43(1): 13-22.

相似文献/References:

[1]刘建武.二氧化碳输送管道工程设计的关键问题[J].油气储运,2014,33(4):369.[doi:10.6047/j.issn.1000-8241.2014.04.006]
 LIU Jianwu.Key issues related to engineering design of CO2 transportation pipeline[J].Oil & Gas Storage and Transportation,2014,33(05):369.[doi:10.6047/j.issn.1000-8241.2014.04.006]
[2]汤林,熊新强,云庆.中国石油油气田地面工程技术进展及发展方向[J].油气储运,2022,41(06):640.[doi:10.6047/j.issn.1000-8241.2022.06.006]
 TANG Lin,XIONG Xinqiang,YUN Qing.Progress and developing trend of CNPC’s oil-gas field surface engineering technology[J].Oil & Gas Storage and Transportation,2022,41(05):640.[doi:10.6047/j.issn.1000-8241.2022.06.006]
[3]刘广瑜,支树洁,柳歆,等.CCUS超临界CO2管道内腐蚀研究进展[J].油气储运,2024,43(05):1.
 Liu Guangyu,OuYang Xin,Liu Xin,et al.Research Progress on Corrosion Behavior of Supercritical CO2 Transportation Pipelines[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[4]胡其会 杨腾 苗青 列斯别克·,塔拉甫别克 李兆兰 范振宁.含杂质超临界CO2管道放空对管内温压变化的影响实验[J].油气储运,2024,43(05):1.
 HU Qihui,YANG Teng,MIAO Qing,et al.Experimental study on the influence of impurity containing supercritical CO2 pipeline venting on temperature and pressure changes inside the pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[5]柳歆 王海锋 杨腾 胡其会 殷布泽 李玉星 朱建鲁 朱振宇.高压CO2管道放空模拟及安全泄放[J].油气储运,2024,43(04):1.
 Liu Xin,Wang Haifeng,Yang Teng,et al.Simulation and safe discharge of high-pressure CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[6]张对红 李玉星.中国超临界CO2管道输送技术进展及展望[J].油气储运,2024,43(05):1.
 ZHANG Duihong LI Yuxing.Progress and prospects of supercritical CO2 pipeline transportation technology in China[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[7]陈兵 李磊磊 齐文娇.BTC方法研究进展及其应用于CO2管道止裂韧性计算的可行性[J].油气储运,2024,43(05):1.
 CHEN Bing,LI Leilei,QI Wenjiao.Research progress of BTC method and feasibility of its application to calculate the crack arrest toughness calculation of CO2 pipelines[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[8]李玉星 路建鑫 柳歆 柴冲 贾启运 王武昌 钱昊楠.超临界/密相CO2管道流量波动瞬态仿真计算模型[J].油气储运,2024,43(05):1.
 LI Yuxing,LU Jianxin,LIU Xin,et al.Transient Simulation Calculation Model for Flow Fluctuation in Supercritical/Dense Phase CO2 Pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[9]张对红,李玉星.中国超临界CO2管道输送技术进展及展望[J].油气储运,2024,43(05):481.[doi:10.6047/j.issn.1000-8241.2024.05.001]
 ZHANG Duihong,LI Yuxing.Development and prospect of supercritical CO2 pipeline transmission technology in China[J].Oil & Gas Storage and Transportation,2024,43(05):481.[doi:10.6047/j.issn.1000-8241.2024.05.001]
[10]刘广瑜,支树洁,柳歆,等.CCUS超临界/密相CO2管道内腐蚀研究进展[J].油气储运,2024,43(05):510.[doi:10.6047/j.issn.1000-8241.2024.05.004]
 LIU Guangyu,ZHI Shujie,LIU Xin,et al.Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS[J].Oil & Gas Storage and Transportation,2024,43(05):510.[doi:10.6047/j.issn.1000-8241.2024.05.004]

备注/Memo

陈兵,女,1969年生,教授,2000年硕士毕业于甘肃工业大学化工过程机械专业,现主要从事油气田地面输送技术、CCUS的管输安全技术、石油石化设备腐蚀与安全防护技术方面的研究工作。地址:陕西省西安市雁塔区电子二路18号,710065。电话:029-88382582。Email:bchen@xsyu.edu.cn
基金项目:陕西省重点研发计划项目“基于CCUS的含杂质CO2管道输送安全关键技术研究”,2022SF-233;西安石油大学研究生创新立项项目“BTC方法研究进展及其应用于CO2管道止裂韧性计算的可行性”,YCS23114180。
· Received: 2024-01-23 · Revised: 2024-02-20 · Online: 2024-03-05

更新日期/Last Update: 2024-05-25