[1]刘广瑜,支树洁,柳歆,等.CCUS超临界/密相CO2管道内腐蚀研究进展[J].油气储运,2024,43(05):510-523.[doi:10.6047/j.issn.1000-8241.2024.05.004]
 LIU Guangyu,ZHI Shujie,LIU Xin,et al.Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS[J].Oil & Gas Storage and Transportation,2024,43(05):510-523.[doi:10.6047/j.issn.1000-8241.2024.05.004]
点击复制

CCUS超临界/密相CO2管道内腐蚀研究进展

参考文献/References:

[1] GALE J,DAVISON J. Transmission of CO2-safety and economic considerations[J]. Energy,2004,29(9/10): 1319-1328. DOI:10.1016/j.energy.2004.03.090.
[2] FURRE A K,EIKEN O,ALNES H,VEVATNE J N,KI?R A F. 20 Years of monitoring CO2-injection at Sleipner[J]. Energy Procedia,2017,114: 3916-3926. DOI: 10.1016/j.egypro.2017. 03.1523.
[3] DUNCAN I,WANG H. Evaluating the likelihood of pipeline failures for future offshore CO2 sequestration projects[J]. International Journal of Greenhouse Gas Control,2014,24: 124-138. DOI: 10.1016/j.ijggc.2014.02.004.
[4] VITALI M,CORVARO F,MARCHETTI B,TERENZI A. Thermodynamic challenges for CO2 pipelines design: a critical review on the effects of impurities,water content,and low temperature[J]. International Journal of Greenhouse Gas Control,2022,114: 103605. DOI: 10.1016/j.ijggc.2022.103605.
[5] ELDEVIK F,GRAVER B,TORBERGSEN L E,SAUGERUD O T. Development of a guideline for safe,reliable and cost efficient transmission of CO2 in pipelines[J]. Energy Procedia,2009,1(1): 1579-1585. DOI: 10.1016/j.egypro.2009.01.207.
[6] CHOI Y S,NE?IC S. Effect of water content on the corrosion behavior of carbon steel in supercritical CO2 phase with impurities[C]. Houston: Corrosion 2011,2011: NACE-11377.
[7] ZHANG Y C,PANG X L,QU S P,LI X,GAO K W. The relationship between fracture toughness of CO2 corrosion scale and corrosion rate of X65 pipeline steel under supercritical CO2 condition[J]. International Journal of Greenhouse Gas Control,2011,5(6): 1643-1650. DOI: 10.1016/j.ijggc.2011.09.011.
[8] BONHAM S,CHRYSOSTOMIDIS I,CROMBIE M,BURT D,VAN GRECO C,LEE A. Local community benefit sharing mechanisms for CCS projects[J]. Energy Procedia,2014,63:8177-8184. DOI: 10.1016/j.egypro.2016.03.002.
[9] XIANG Y,XU M H,CHOI Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models[J]. Corrosion Engineering,Science and Technology,2017,52(7): 485-509. DOI:10.1080/1478422X.2017.1304690.
[10] 李玉星,刘兴豪,王财林,胡其会,王婧涵,马宏涛,等.含杂质气态CO2输送管道腐蚀研究进展[J].金属学报,2021,57(3):283-294. 10.11900/0412.1961.2020.00165. LI Y X,LIU X H,WANG C L,HU Q H,WANG J H,MA H T,et al. Research progress on corrosion behavior of gaseous CO2 transportation pipelines containing impurities[J]. Acta Metallurgica Sinica,2021,57(3): 283-294.
[11] VANDEGINSTE V,PIESSENS K. Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle[J]. International Journal of Greenhouse Gas Control,2008,2(4): 571-581. DOI: 10.1016/j.ijggc.2008.02.001.
[12] DOOLEY J J,DAHOWSKI R T,DAVIDSON C L. Comparing existing pipeline networks with the potential scale of future U.S. CO2 pipeline networks[J]. Energy Procedia,2009,1(1): 1595-1602. DOI: 10.1016/j.egypro.2009.01.209.
[13] KOORNNEEF J,RAM?REZ A,TURKENBURG W,FAAIJ A. The environmental impact and risk assessment of CO2 capture,transport and storage-An evaluation of the knowledge base[J]. Progress in Energy and Combustion Science,2012,38(1): 62-86. DOI: 10.1016/j.pecs.2011.05.002.
[14] JOHNSEN K,HELLE K,R?NEID S,HOLT H. DNV recommended practice: design and operation of CO2 pipelines[J]. Energy Procedia,2011,4: 3032-3039. DOI: 10.1016/j.egypro. 2011.02.214.
[15] ONYEBUCHI V E,KOLIOS A,HANAK D P,BILIYOK C,MANOVIC V. A systematic review of key challenges of CO2 transport via pipelines[J]. Renewable and Sustainable Energy Reviews,2018,81(Part 2): 2563-2583. DOI: 10.1016/j.rser.2017.06.064.
[16] WANG Z M,SONG G L,ZHANG J. Corrosion control in CO2 enhanced oil recovery from a perspective of multiphase fluids[J]. Frontiers in Materials,2019,6: 272. DOI: 10.3389/fmats.2019.00272.
[17] ZHENG Y G,NING J,BROWN B,NE?I S. Electrochemical model of mild steel corrosion in a mixed H2S/CO2 aqueous environment in the absence of protective corrosion product layers[J]. Corrosion,2015,71(3): 316-325. DOI: 10.5006/1287.
[18] TANG S,ZHU C Y,CUI G,XING X,MU J,LI Z L. Analysis of internal corrosion of supercritical CO2 pipeline[J]. Corrosion Reviews,2021,39(3): 219-241. DOI: 10.1515/corrrev-2020-0041.
[19] JUNG W,NICOT J P. Impurities in CO2-rich mixtures impact CO2 pipeline design: implications for calculating CO2 transport capacity[C]. New Orleans: SPE International Conference on CO2 Capture,Storage,and Utilization,2010: SPE-139712-MS.
[20] LOVSETH S W,SKAUGEN G,JACOB STANG H G,JAKOBSEN J P,WILHELMSEN ?,SPAN R,et al. CO2 mix project: experimental determination of thermo physical properties of CO2-rich mixtures[J]. Energy Procedia,2013,37:2888-2896. DOI: 10.1016/j.egypro.2013.06.174.
[21] KAISER S,BRINGEZU S. Use of carbon dioxide as raw material to close the carbon cycle for the German chemical and polymer industries[J]. Journal of Cleaner Production,2020,271:122775. DOI: 10.1016/j.jclepro.2020.122775.
[22] WETENHALL B,RACE J,DOWNIE M. The effect of impurities on a simplified CCS network[C]. Prague: PSIG Annual Meeting,2013: PSIG-1306.
[23] BONIS M. Managing the corrosion impact of dense phase CO2 injection for an EOR purpose[C]. Abu Dhabi: Abu Dhabi International Petroleum Conference and Exhibition,2012: SPE-161207-MS.
[24] BOOT-HANDFORD M E,ABANADES J C,ANTHONY E J,BLUNT M J,BRANDANI S,MAC DOWELL N,et al. Carbon capture and storage update[J]. Energy & Environmental Science,2014,7(1): 130-189. DOI: 10.1039/C3EE42350F.
[25] LIMA P R,PEREIRA A A M,DE LORENA DINIZ CHAVES G,MENEGUELO A P. Environmental awareness and public perception on carbon capture and storage (CCS) in Brazil[J]. International Journal of Greenhouse Gas Control,2021,111: 103467. DOI: 10.1016/j.ijggc.2021.103467.
[26] MCCOLLOUGH D E,STILES R L. Operation of the central basin CO2 pipeline system[C]. Ventura: SPE California Regional Meeting,1987: SPE-16329-MS.
[27] DE VISSER E,HENDRIKS C,BARRIO M,M?LNVIK M J,DE KOEIJER G,LILJEMARK S,et al. Dynamis CO2 quality recommendations[J]. International Journal of Greenhouse Gas Control,2008,2(4): 478-484. DOI: 10.1016/j.ijggc.2008.04.006.
[28] SUN C,SUN J B,WANG Y,LIN X Q,LI X D,CHENG X K,et al. Synergistic effect of O2,H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. Corrosion Science,2016,107: 193-203. DOI:10.1016/j.corsci.2016.02.032.
[29] SUN C,WANG Y,SUN J B,LIN X Q,LI X D,LIU H F,et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. The Journal of Supercritical Fluids,2016,116: 70-82. DOI: 10.1016/j.supflu. 2016.05.006.
[30] SUI P F,SUN C,HUA Y,SUN J B,WANG Y. The influence of flow rate on corrosion behavior of X65 carbon steel in water-saturated supercritical CO2/H2S system[C]. Nashville: Corrosion 2019,2019: NACE-2019-13081.
[31] SUN C,LIU J X,SUN J B,LIN X Q,WANG Y. Probing the initial corrosion behavior of X65 steel in CCUS-EOR environments with impure supercritical CO2 fluids[J]. Corrosion Science,2021,189: 109585. DOI: 10.1016/j.corsci.2021.109585.
[32] WANG W H,SHEN K L,TANG S,SHEN R Q,PARKER T,WANG Q S. Synergistic effect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2[J]. Process Safety and Environmental Protection,2019,130: 57-66. DOI: 10.1016/j.psep.2019.07.017.
[33] ZENG Y M,LI K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines[J]. Corrosion Science,2020,165:108404. DOI: 10.1016/j.corsci.2019.108404.
[34] 孙冲,王勇,孙建波,蒋涛,赵卫民,张彦春.含杂质超临界CO2输送管线腐蚀的研究进展[J].中国腐蚀与防护学报,2015,35(5):379-385. 10.11902/1005.4537.2014.228. SUN C,WANG Y,SUN J B,JIANG T,ZHAO W M,ZHANG Y C. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS[J]. Journal of Chinese Society for Corrosion and Protection,2015,35(5): 379-385.
[35] CUI G,YANG Z Q,LIU J G,LI Z L. A comprehensive review of metal corrosion in a supercritical CO2 environment[J]. International Journal of Greenhouse Gas Control,2019,90:102814. DOI: 10.1016/j.ijggc.2019.102814.
[36] MUNKEJORD S T,JAKOBSEN J P,AUSTEGARD A,M?LNVIK M J. Thermo-and fluid-dynamical modelling of two-phase multi-component carbon dioxide mixtures[J]. International Journal of Greenhouse Gas Control,2010,4(4):589-596. DOI: 10.1016/j.ijggc.2010.02.003.
[37] FOLTRAN S,VOSPER M E,SULEIMAN N B,WRIGLESWORTH A,KE J,DRAGE T C,et al. Understanding the solubility of water in carbon capture and storage mixtures:an FTIR spectroscopic study of H2O+CO2+N2 ternary mixtures[J]. International Journal of Greenhouse Gas Control,2015,35: 131-137. DOI: 10.1016/j.ijggc.2015.02.002.
[38] CLARKE M J,HARRISON K L,JOHNSTON K P,HOWDLE S M. Water in supercritical carbon dioxide microemulsions:spectroscopic investigation of a new environment for aqueous inorganic chemistry[J]. Journal of the American Chemical Society,1997,119(27): 6399-6406. DOI: 10.1021/ja9639527.
[39] SUI P F,SUN J B,HUA Y,LIU H F,ZHOU M N,ZHANG Y C,et al. Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S[J]. International Journal of Greenhouse Gas Control,2018,73: 60-69. DOI: 10.1016/j.ijggc. 2018.04.003.
[40] HUA Y,BARKER R,NEVILLE A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2[J]. International Journal of Greenhouse Gas Control,2014,31: 48-60. DOI:10.1016/j.ijggc.2014.09.026.
[41] HUA Y,BARKER R,CHARPENTIER T,WARD M,NEVILLE A. Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems[J]. The Journal of Supercritical Fluids,2015,98: 183-193. DOI:10.1016/j.supflu.2014.12.009.
[42] HUA Y,BARKER R,NEVILLE A. Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2[J]. The Journal of Supercritical Fluids,2015,97: 224-237. DOI:10.1016/j.supflu.2014.12.005.
[43] NEWTON L E,MCCLAY R A. Corrosion and operational problems,CO2 project,SACROC unit[C]. Midland: SPE Permian Basin Oil and Gas Recovery Conference,1977: SPE-6391-MS.
[44] CHOI Y S,NE?I S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. International Journal of Greenhouse Gas Control,2011,5(4):788-797. DOI: 10.1016/j.ijggc.2010.11.008.
[45] SPYCHER N,PRUESS K,ENNIS-KING J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar[J]. Geochimica et Cosmochimica Acta,2003,67(16):3015-3031. DOI: 10.1016/S0016-7037(03)00273-4.
[46] SIM S,COLE I S,CHOI Y S,BIRBILIS N. A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes[J]. International Journal of Greenhouse Gas Control,2014,29: 185-199. DOI: 10.1016/j.ijggc.2014.08.010.
[47] 陈长风.油套管钢CO2腐蚀电化学行为与腐蚀产物膜特性研究[D].西安:西北工业大学,2002. CHEN C F. Research on electrochemical behavior and corrosion scale characteristics of CO2 corrosion for tubing and casing steel[D]. Xi'an: Northwestern Polytechnical University,2002.
[48] FARELAS F,CHOI Y S,NE?I S. Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide[J]. Corrosion,2013,69(3): 243-250. DOI: 10.5006/0739.
[49] DUGSTAD A,MORLAND B,CLAUSEN S. Corrosion of transport pipelines for CO2-Effect of water ingress[J]. Energy Procedia,2011,4: 3063-3070. DOI: 10.1016/j.egypro.2011. 02.218.
[50] ZENG Y M,PANG X,SHI C,ARAFIN M,ZAVADIL R,COLLIER J. Influence of impurities on corrosion performance of pipeline steels in supercritical carbon dioxide[C]. Dallas:Corrosion 2015,2015: NACE-2015-5755.
[51] JIANG X,QU D R,SONG X L,LIU X H,ZHANG Y L. Impact of water content on corrosion behavior of CO2 transportation pipeline[C]. Dallas: Corrosion 2015,2015:NACE-2015-5844.
[52] CABRINI M,LORENZI S,PASTORE T,RADAELLI M. Corrosion rate of high CO2 pressure pipeline steel for carbon capture transport and storage[J]. La Metallurgia Italiana,2014,6: 21-27.
[53] CUI Z D,WU S L,ZHU S L,YANG X J. Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO2[J]. Applied Surface Science,2006,252(6):2368-2374. DOI: 10.1016/j.apsusc.2005.04.008.
[54] 蒋春跃,吴建峰,孙志娟,潘勤敏.水在超临界二氧化碳中的溶解度[J].化学工程,2014,42(7):42-47. 10.3969/j.issn.1005-9954.2014.07.009. JIANG C Y,WU J F,SUN Z J,PAN Q M. Solubility of water in supercritical CO2[J]. Chemical Engineering,2014,42(7): 42-47.
[55] SIM S,BOCHER F,COLE I S,CHEN X B,BIRBILIS N. Investigating the effect of water content in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Corrosion,2014,70(2): 185-195. DOI: 10.5006/0944.
[56] XIANG Y,WANG Z,YANG X X,LI Z,NI W D. The upper limit of moisture content for supercritical CO2 pipeline transport[J]. The Journal of Supercritical Fluids,2012,67: 14-21. DOI: 10.1016/j.supflu.2012.03.006.
[57] XIANG Y,WANG Z,LI Z,NI W D. Effect of exposure time on the corrosion rates of X70 steel in supercritical CO2/SO2/O2/H2O environments[J]. Corrosion,2013,69(3): 251-258. DOI:10.5006/0769.
[58] AYELLO F,EVANS K,SRIDHAR N,THODLA R. Effect of liquid impurities on corrosion of carbon steel in supercritical CO2[C]. Calgary: 2010 8th International Pipeline Conference,2010: 111-123.
[59] SUN C,SUN J B,LIU S B,WANG Y. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application[J]. Corrosion Science,2018,137: 151-162. DOI:10.1016/j.corsci.2018.03.041.
[60] TANG Y,GUO X P,ZHANG G A. Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology[J]. Corrosion Science,2017,118: 118-128. DOI: 10.1016/j.corsci.2017.01.028.
[61] DUGSTAD A,HALSEID M,MORLAND B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines[J]. Energy Procedia,2013,37: 2877-2887. DOI:10.1016/j.egypro.2013.06.173.
[62] CHOI Y S,NE?I S,JUNG H G. Effect of alloying elements on the corrosion behavior of carbon steel in CO2 environments[J]. Corrosion,2018,74(5): 566-576. DOI: 10.5006/2705.
[63] DUGSTAD A,MORLAND B,CLAUSEN S. Corrosion of transport pipelines for CO2-Effect of water ingress[J]. Energy Procedia,2011,4: 3063-3070. DOI: 10.1016/j.egypro.2011. 02.218.
[64] CHOI Y S,NESIC S,YOUNG D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J]. Environmental Science& Technology,2010,44(23): 9233-9238. DOI: 10.1021/es102578c.
[65] XIANG Y,WANG Z,XU C,ZHOU C C,LI Z,NI W D. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2[J]. The Journal of Supercritical Fluids,2011,58(2): 286-294. DOI: 10.1016/j.supflu.2011.06.007.
[66] BUIT L,AHMAD M,MALLON W,HAGE F. CO2 EuroPipe study of the occurrence of free water in dense phase CO2 transport[J]. Energy Procedia,2011,4: 3056-3062. DOI:10.1016/j.egypro.2011.02.217.
[67] COLE I S,PATERSON D A,CORRIGAN P,SIM S,BIRBILIS N. State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines[J]. International Journal of Greenhouse Gas Control,2012,7: 82-88. DOI: 10. 1016/j.ijggc.2011.12.008.
[68] 张玉成,鞠新华,庞晓露,高克玮. O2浓度对钢在超临界CO2中腐蚀速率的影响[J].中国腐蚀与防护学报,2015,35(3):220-226. 10.11902/1005.4537.2014.077. ZHANG Y C,JU X H,PANG X L,GAO K W. Effect of O2 concentration on corrosion rate of steels in supercritical CO2[J]. Journal of Chinese Society for Corrosion and Protection,2015,35(3): 220-226.
[69] HUA Y,BARKER R,NEVILLE A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments[J]. Applied Surface Science,2015,356: 499-511. DOI: 10.1016/j.apsusc.2015.08.116.
[70] LUO B W,ZHOU J,BAI P P,ZHENG S Q,AN T,WEN X L. Comparative study on the corrosion behavior of X52,3Cr,and 13Cr steel in an O2-H2O-CO2 system: products,reaction kinetics,and pitting sensitivity[J]. International Journal of Minerals,Metallurgy,and Materials,2017,24(6): 646-656. DOI: 10.1007/s12613-017-1447-9.
[71] PFENNIG A,ZASTROW P,KRANZMANN A. Supercritical CO2-corrosion in heat treated steel pipes during carbon capture and storage CCS[C]. Goslar: Clean Energy Systems in the Subsurface: Production,Storage and Conversion,2011:39-51.
[72] ROSLI N R,CHOI Y S,YOUNG D. Impact of oxygen ingress in CO2 corrosion of mild steel[C]. San Antonio: Corrosion 2014,2014: NACE-2014-4299.
[73] ZENG Y M,ARAFIN M,SHI C,ZAVADIL R. Influence of impurity hydrogen sulfide on the corrosion performance of pipeline steels in supercritical carbon dioxide stream[C]. Vancouver: Corrosion 2016,2016: NACE-2016-7223.
[74] WEI L,PANG X L,GAO K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J]. Corrosion Science,2016,103: 132-144. DOI: 10.1016/j.corsci.2015.11.009.
[75] SUN J B,SUN C,ZHANG G A,LI X D,ZHAO W M,JIANG T,et al. Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. Corrosion Science,2016,107: 31-40. DOI: 10.1016/j.corsci.2016.02.017.
[76] SUN J B,SUN C,WANG Y. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system[J]. Industrial &Engineering Chemistry Research,2018,57(6): 2365-2375. DOI:10.1021/acs.iecr.7b04870.
[77] CHOI Y S,NESIC S,YOUNG D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J]. Environmental Science & Technology,2010,44(23): 9233-9238. DOI: 10.1021/es102578c.
[78] AYELLO F,EVANS K,THODLA R,SRIDHAR N. Effect of impurities on corrosion of steel in supercritical CO2[C]. San Antonio: Corrosion 2010,2010: NACE-10193.
[79] RUHL A S,KRANZMANN A. Investigation of pipeline corrosion in pressurized CO2 containing impurities[J]. Energy Procedia,2013,37: 3131-3136. DOI: 10.1016/j.egypro.2013. 06.199.
[80] DUGSTAD A. Fundamental aspects of CO2 metal loss corrosion-part 1: mechanism[C]. San Diego: Corrosion 2006,2006: NACE-06111.
[81] NE?I S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review[J]. Corrosion Science,2007,49(12): 4308-4338. DOI: 10.1016/j.corsci.2007.06.006.
[82] XIANG Y,WANG Z,LI Z,NI W D. Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments[J]. Corrosion Engineering,Science and Technology,2013,48(2): 121-129. DOI: 10.1179/1743278212Y. 0000000050.
[83] XIANG Y,WANG Z,XU M H,LI Z,NI W D. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2-H2O environments[J]. The Journal of Supercritical Fluids,2013,82: 1-12. DOI: 10.1016/j.supflu.2013.05.016.
[84] CHOI Y S,HASSANI S,VU T N,NE?I S,ABAS A Z B. Effect of H2S on the corrosion behavior of pipeline steels in supercritical and liquid CO2 environments[J]. Corrosion,2016,72(8): 999-1009. DOI: 10.5006/2026.
[85] CHOI Y S,FARELAS F,NE?I S,MAGALH?ES A A O,DE AZEVEDO ANDRADE C. Corrosion behavior of deep water oil production tubing material under supercritical CO2 environment: part 1: effect of pressure and temperature[J]. Corrosion,2014,70(1): 38-47. DOI: 10.5006/1019.
[86] WEI L,PANG X L,LIU C,GAO K W. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment[J]. Corrosion Science,2015,100: 404-420. DOI: 10.1016/j.corsci.2015.08.016.
[87] XU M H,LI W H,ZHOU Y,YANG X X,WANG Z,LI Z. Effect of pressure on corrosion behavior of X60,X65,X70,and X80 carbon steels in water-unsaturated supercritical CO2 environments[J]. International Journal of Greenhouse Gas Control,2016,51: 357-368. DOI: 10.1016/j.ijggc.2016.06.002.
[88] DUGSTAD A,HALSEID M,MORLAND B,SIVERTSEN A O. Corrosion in dense phase CO2-the impact of depressurisation and accumulation of impurities[J]. Energy Procedia,2013,37:3057-3067. DOI: 10.1016/j.egypro.2013.06.192.
[89] PAUL S. Thermally sprayed corrosion resistant alloy coatings on carbon steel for use in supercritical CO2 environments[C]. Dallas: Corrosion 2015,2015: NACE-2015-5939.
[90] MORLAND B H,NORBY T,TJELTA M,SVENNINGSEN G. Effect of SO2,O2,NO2,and H2O concentrations on chemical reactions and corrosion of carbon steel in dense phase CO2[J]. Corrosion,2019,75(11): 1327-1338. DOI: 10.5006/3111.
[91] FEDKIN M,LVOV S,ZIOMEK-MOROZ M,BECK J. Membrane-coated electrochemical probe for corrosion measurements of high strength carbon steel in supercritical CO2[C]. Orlando: Corrosion 2013,2013: NACE-2013-2347.
[92] BECK J,FEDKINA M,LVOV S N,ZIOMEK-MOROZ M E,HOLCOMB G,TYLCZAK J,et al. In situ electrochemical corrosion measurements of carbon steel in supercritical CO2 using a membrane-coated electrochemical probe[J]. ECS Transactions,2013,45(19): 39-50. DOI: 10.1149/04519. 0039ecst.
[93] XIE J J,XIAN Y J,JIA G W. An investigation into the public acceptance in China of carbon capture and storage (CCS) technology[J]. Mitigation and Adaptation Strategies for Global Change,2023,28(5): 27. DOI: 10.1007/s11027-023-10065-6.
[94] LI K Y,ZENG Y M,LUO J L. Corrosion of SS310 and alloy 740 in high temperature supercritical CO2 with impurities H2O and O2[J]. Corrosion Science,2021,184: 109350. DOI: 10.1016/j.corsci.2021.109350.
[95] XIANG Y,XIE W M,NI S Y,HE X H. Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process: Effect of NO3-[J]. Corrosion Science,2020,167: 108521. DOI: 10.1016/j.corsci.2020.108521.
[96] SUN J B,ZHANG G A,LIU W,LU M X. The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution[J]. Corrosion Science,2012,57: 131-138. DOI: 10.1016/j.corsci.2011.12.025.
[97] MORLAND B H,DUGSTAD A,SVENNINGSEN G. Corrosion of carbon steel in dense phase CO2 with water above and below the solubility limit[J]. Energy Procedia,2017,114:6752-6765. DOI: 10.1016/j.egypro.2017.03.1807.
[98] MORLAND B H,TJELTA M,NORBY T,SVENNINGSEN G. Acid reactions in hub systems consisting of separate non-reactive CO2 transport lines[J]. International Journal of Greenhouse Gas Control,2019,87: 246-255. DOI: 10.1016/j.ijggc.2019.05.017.
[99] SONKE J,BOS W M,PATERSON S J. Materials challenges with CO2 transport and injection for carbon capture and storage[J]. International Journal of Greenhouse Gas Control,2022,114: 103601. DOI: 10.1016/j.ijggc.2022.103601.
[100] XIANG Y,WANG Z,LI Z,NI W. Long term corrosion of X70 steel and iron in humid supercritical CO2 with SO2 and O2 impurities[J]. Corrosion Engineering,Science and Technology,2013,48(5): 395-398. DOI: 10.1179/1743278213Y.0000000099.
[101] LI K Y,ZENG Y M,LUO J L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation[J]. Corrosion Science,2021,190: 109639. DOI: 10.1016/j.corsci.2021.109639.
[102] WEI L,GAO K W,LI Q. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments[J]. Applied Surface Science,2018,440: 524-534. DOI: 10.1016/j.apsusc.2018.01.181.
[103] ZHAO X H,HUANG W,LI G P,FENG Y R,ZHANG J X. Effect of CO2/H2S and applied stress on corrosion behavior of 15Cr tubing in oil field environment[J]. Metals,2020,10(3):409. DOI: 10.3390/met10030409.
[104] WU Y S,CAO B,FANG Z. SCC susceptibility of steel 16Mn in nitrate solution and its mechanism[J]. International Journal of Minerals,Metallurgy and Materials,2002,9(1): 31-35.[105] KAHYARIAN A,NESIC S. On the mechanism of carbon dioxide corrosion of mild steel: Experimental investigation and mathematical modeling at elevated pressures and non-ideal solutions[J]. Corrosion Science,2020,173: 108719. DOI:10.1016/j.corsci.2020.108719.
[106] LI Y Y,ZHU G Y,HOU B S,ZHANG Q H,ZHANG G A. A numerical model based on finite element method for predicting the corrosion of carbon steel under supercritical CO2 conditions[J]. Process Safety and Environmental Protection,2021,149: 866-884. DOI: 10.1016/j.psep.2021.03.030.
[107] WANG C L,HUA Y,NADIMI S,TALEB W,BARKER R,LI Y X,et al. Determination of thickness and air-void distribution within the iron carbonate layers using X-ray computed tomography[J]. Corrosion Science,2021,179:109153. DOI: 10.1016/j.corsci.2020.109153.
[108] 黄维和,李玉星,陈朋超.碳中和愿景下中国二氧化碳管道发展战略[J].天然气工业,2023,43(7):1-9. 10.3787/j.issn.1000-0976.2023.07.001. HUANG W H,LI Y X,CHEN P C. China’s CO2 pipeline development strategy under the strategy of carbon neutrality[J]. Natural Gas Industry,2023,43(7): 1-9.

相似文献/References:

[1]蒋秀 屈定荣 刘小辉. 超临界CO2 管道输送与安全[J].油气储运,2013,32(8):809.[doi:10.6047/j.issn.1000-8241.2013.08.003]
 Jiang Xiu,Qu Dingrong,Liu Xiaohui.Supercritical CO2 pipeline transportation and safety[J].Oil & Gas Storage and Transportation,2013,32(05):809.[doi:10.6047/j.issn.1000-8241.2013.08.003]
[2]刘建武.二氧化碳输送管道工程设计的关键问题[J].油气储运,2014,33(4):369.[doi:10.6047/j.issn.1000-8241.2014.04.006]
 LIU Jianwu.Key issues related to engineering design of CO2 transportation pipeline[J].Oil & Gas Storage and Transportation,2014,33(05):369.[doi:10.6047/j.issn.1000-8241.2014.04.006]
[3]赖力,龙伟.超临界CO2 管道泄压过程中管内动态应力分布[J].油气储运,2018,37(3):276.[doi:10.6047/j.issn.1000-8241.2018.03.006]
 LAI Li,LONG Wei.Distribution of dynamic stress on the supercritical CO2 pipeline in the process of its pressure relief[J].Oil & Gas Storage and Transportation,2018,37(05):276.[doi:10.6047/j.issn.1000-8241.2018.03.006]
[4]张磊.超临界CO2 条件下温度对5 种典型钢腐蚀行为的影响[J].油气储运,2020,39(09):1031.[doi:10.6047/j.issn.1000-8241.2020.09.010]
 ZHANG Lei.Influence of temperature on 5 typical steel corrosion behavior under supercritical CO2 condition[J].Oil & Gas Storage and Transportation,2020,39(05):1031.[doi:10.6047/j.issn.1000-8241.2020.09.010]
[5]汤林,熊新强,云庆.中国石油油气田地面工程技术进展及发展方向[J].油气储运,2022,41(06):640.[doi:10.6047/j.issn.1000-8241.2022.06.006]
 TANG Lin,XIONG Xinqiang,YUN Qing.Progress and developing trend of CNPC’s oil-gas field surface engineering technology[J].Oil & Gas Storage and Transportation,2022,41(05):640.[doi:10.6047/j.issn.1000-8241.2022.06.006]
[6]潘振,吴京京,陈轶男,等.基于LNG冷能利用的多联产系统模拟与性能优化[J].油气储运,2022,41(07):810.[doi:10.6047/j.issn.1000-8241.2022.07.008]
 PAN Zhen,WU Jingjing,CHEN Yi&apos,et al.Simulation and performance optimization of a poly-generation system based on LNG cold energy utilization[J].Oil & Gas Storage and Transportation,2022,41(05):810.[doi:10.6047/j.issn.1000-8241.2022.07.008]
[7]刘广瑜,支树洁,柳歆,等.CCUS超临界CO2管道内腐蚀研究进展[J].油气储运,2024,43(05):1.
 Liu Guangyu,OuYang Xin,Liu Xin,et al.Research Progress on Corrosion Behavior of Supercritical CO2 Transportation Pipelines[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[8]李欣泽 孙晨 张雪琴 邹炜杰 袁亮 熊小琴 邢晓凯 徐宁.新疆油田超临界CO2管道安全停输工艺边界范围确定[J].油气储运,2024,43(05):1.
 LI Xinze,SUN Chen,Zhang Xueqin,et al.Study on safe shutdown process boundary range of a supercritical CO2 pipeline in Xinjiang Oilfield[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[9]胡其会 杨腾 苗青 列斯别克·,塔拉甫别克 李兆兰 范振宁.含杂质超临界CO2管道放空对管内温压变化的影响实验[J].油气储运,2024,43(05):1.
 HU Qihui,YANG Teng,MIAO Qing,et al.Experimental study on the influence of impurity containing supercritical CO2 pipeline venting on temperature and pressure changes inside the pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):1.
[10]柳歆 王海锋 杨腾 胡其会 殷布泽 李玉星 朱建鲁 朱振宇.高压CO2管道放空模拟及安全泄放[J].油气储运,2024,43(04):1.
 Liu Xin,Wang Haifeng,Yang Teng,et al.Simulation and safe discharge of high-pressure CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):1.

备注/Memo

刘广瑜,男,1999年生,在读博士生,2021年毕业于中国石油大学(华东)油气储运工程专业,现主要从事CO2管道腐蚀方向的研究工作。地址:山东省青岛市黄岛区长江西路66号,266500。电话:15953242821。Email:15953242821@163.com通信作者:胡其会,男,1981年生,副教授,2011年博士毕业于西安交通大学动力工程及工程热物理专业,现主要从事CO2管道输送理论与安全保障方向的研究工作。地址:山东省青岛市黄岛区长江西路66号,266500。电话:0532-86980919。Email:huqihui@upc.edu.cn
基金项目:国家重点研发计划“战略性科技创新合作”专项“区域二氧化碳捕集与封存关键技术研发与示范”,2022YFE0206800;国家石油天然气管网集团有限公司科技专项课题“超临界CO2管道输送工艺与安全技术”,SSCC202107。
· Received: 2023-11-13 · Revised: 2023-11-28 · Online: 2024-03-20

更新日期/Last Update: 2024-05-25