[1]张俊朋,苗青,荆少东,等.埋地CO2管道泄漏扩散特征研究进展[J].油气储运,2024,43(05):500-509.[doi:10.6047/j.issn.1000-8241.2024.05.003]
 ZHANG Junpeng,MIAO Qing,JING Shaodong,et al.Research progress on characteristics of leakage and diffusion of buried CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(05):500-509.[doi:10.6047/j.issn.1000-8241.2024.05.003]
点击复制

埋地CO2管道泄漏扩散特征研究进展

参考文献/References:

[1] HU Y W,YAN X Q,CHEN L,YU S,LIU C Y,YU J L. Leakage hazard distance of supercritical CO2 pipelines through experimental and numerical studies[J]. International Journal of Greenhouse Gas Control,2022,119: 103730. DOI: 10.1016/j.ijggc.2022.103730.
[2] LIU B,LIU X,LU C,GODBOLE A,MICHAL G,TIEU A K. A CFD decompression model for CO2 mixture and the influence of non-equilibrium phase transition[J]. Applied Energy,2018,227:516-524. DOI: 10.1016/j.apenergy.2017.09.016.
[3] 鲁岑. CO2管道输送规律及运行参数[J].油气储运,2015,34(5):493-496. 10.6047/j.issn.1000-8241.2015.05.007. LU C. Transmission rules of CO2 through pipelines and relevant operational parameters[J]. Oil & Gas Storage and Transportation,2015,34(5): 493-496.
[4] WANG H R,LIU B,LIU X,LU C,DENG J J,YOU Z P. Dispersion of carbon dioxide released from buried high-pressure pipeline over complex terrain[J]. Environmental Science and Pollution Research,2021,28(6): 6635-6648. DOI: 10.1007/s11356-020-11012-7.
[5] PHAM L H H P,RUSLI R. A review of experimental and modelling methods for accidental release behaviour of high-pressurised CO2 pipelines at atmospheric environment[J]. Process Safety and Environmental Protection,2016,104(Part A): 48-84. DOI: 10.1016/j.psep.2016.08.013.
[6] 叶岩,王岳.土壤大气耦合埋地管道泄漏扩散的数值分析[J].辽宁石油化工大学学报,2019,39(2):63-69. 10.3969/j.issn.1672-6952.2019.02.012. YE Y,WANG Y. Numerical simulation of leakage and diffusion of buried pipelines based on soil atmosphere coupling[J]. Journal of Liaoning Petrochemical University,2019,39(2): 63-69.
[7] 陈国龙,闫振汉,喻健良,闫兴清,曹琦,刘少荣.大规模埋地CO2管道泄漏过程中的温度场变化[J].安全与环境学报,2020,20 (3):870-877. 10.13637/j.issn.1009-6094.2019.0541. CHEN G L,YAN Z H,YU J L,YAN X Q,CAO Q,LIU S R. Temperature field in the process of the buried CO2 pipeline release in large scale[J]. Journal of Safety and Environment,2020,20(3):870-877.
[8] 喻健良,刘少荣,闫兴清,曹琦,闫振汉. CO2埋地管道泄漏区土壤形貌及温度场研究[J].安全与环境工程,2019,26(5):167-174. 10.13578/j.cnki.issn.1671-1556.2019.05.025. YU J L,LIU S R,YAN X Q,CAO Q,YAN Z H. Study on soil mopography and temperature field in leakage zone of CO2 buried pipeline[J]. Safety and Environmental Engineering,2019,26(5):167-174.
[9] WANG C L,LI Y X,TENG L,GU S W,HU Q H,ZHANG D T,et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines[J]. Experimental Thermal and Fluid Science,2019,105: 77-84. DOI: 10.1016/j.expthermflusci.2019.03.014.
[10] LI K,ZHOU X J,TU R,XIE Q Y,JIANG X. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy,2014,71: 665-672. DOI: 10.1016/j.energy.2014.05.005.
[11] GU S W,LI Y X,TENG L,WANG C L,HU Q H,ZHANG D T,et al. An experimental study on the flow characteristics during the leakage of high pressure CO2 pipelines[J]. Process Safety and Environmental Protection,2019,125: 92-101. DOI:10.1016/j.psep.2019.03.010.
[12] 熊兆洪,李振林,宫敬,李克.埋地管道小泄漏模型及数值求解[J]. 石油学报,2012,33(3):493-498. 10.7623/syxb201203023. XIONG Z H,LI Z L,GONG J,LI K. A model for underground pipeline small leakage and its numerical solution[J]. Acta Petrolei Sinica,2012,33(3): 493-498.
[13] ELSHAHOMI A,LU C,MICHAL G,LIU X,GODBOLE A,VENTON P. Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state[J]. Applied Energy,2015,140: 20-32. DOI: 10.1016/j.apenergy.2014.11.054.
[14] 郭晓璐,喻健良,闫兴清,徐鹏,徐双庆.超临界CO2管道泄漏特性研究进展[J].化工学报,2020,71(12):5430-5442. 10.11949/0438-1157.20200453. GUO X L,YU J L,YAN X Q,XU P,XU S Q. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal,2020,71(12): 5430-5442.
[15] YAN X Q,GUO X L,LIU Z G,YU J L. Release and dispersion behaviour of carbon dioxide released from a small-scale underground pipeline[J]. Journal of Loss Prevention in the Process Industries,2016,43: 165-173. DOI: 10.1016/j.jlp.2016.05.016.
[16] 喻健良,于帅,闫兴清,曹琦,闫振汉.超临界CO2埋地管道泄漏土壤形貌及温度研究[J].安全与环境学报,2021,21(5):1963-1970. 10.13637/j.issn.1009-6094.2020.0469. YU J L,YU S,YAN X Q,CAO Q,YAN Z H. Study on the soil morphology and temperature change in the leakage zone of the supercritical CO2 buried pipeline[J]. Journal of Safety and Environment,2021,21(5): 1963-1970.
[17] LIU Z Y,XIU Z H,ZHAO Y,LI M Z,LI P L,CAI P,et al. Experimental study on the leakage temperature field of buried CO2 pipelines[J]. Environmental Science and Pollution Research,2023,30(27): 70288-70302. DOI: 10.1007/s11356-023-27289-3.
[18] CORTIS A,OLDENBURG C M,BENSON S M. The role of optimality in characterizing CO2 seepage from geologic carbon sequestration sites[J]. International Journal of Greenhouse Gas Control,2008,2(4): 640-652. DOI: 10.1016/j.ijggc.2008.04.008.
[19] 陈兵,赵琼,郭焕焕.孔隙率对埋地超临界CO2管道泄漏扩散的影响[J].科学技术与工程,2022,22(19):8313-8319. 10.3969/j.issn.1671-1815.2022.19.020. CHEN B,ZHAO Q,GUO H H. Influence of the porosity on the leakage and diffusion of the buried supercritical CO2 pipeline[J]. Science Technology and Engineering,2022,22(19): 8313-8319.
[20] YAN Y T,DONG X Q,LI J M. Experimental study of methane diffusion in soil for an underground gas pipe leak[J]. Journal of Natural Gas Science and Engineering,2015,27: 82-89. DOI:10.1016/j.jngse.2015.08.039.
[21] LIU J,YANG F K,CHONG S,WEN Q Z. Numerical simulation of CO2 leakage in a shallow subsurface layer from a CO2 geological storage site[J]. Hydrogeology Journal,2020,28(7): 2439-2455. DOI: 10.1007/s10040-020-02181-3.
[22] LIU J,YANG F K,CHONG S,WEN Q Z,LIN Q G. Modeling CO2 migration in a site-specific shallow subsurface under complex hydrodynamics[J]. International Journal of Greenhouse Gas Control,2021,112: 103483. DOI: 10.1016/j.ijggc.2021.103483.
[23] PHOON K K,HUANG S P,QUEK S T. Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics,2002,17(3): 293-303. DOI: 10.1016/S0266-8920(02)00013-9.
[24] OGRETIM E,MULKEEN E,GRAY D D,BROMHAL G S. A parametric study of the transport of CO2 in the near-surface[J]. International Journal of Greenhouse Gas Control,2012,9: 294-302. DOI: 10.1016/j.ijggc.2012.04.007.
[25] CHAMINDU DEEPAGODA T K K,SMITS K M,OLDENBURG C M. Effect of subsurface soil moisture variability and atmospheric conditions on methane gas migration in shallow subsurface[J]. International Journal of Greenhouse Gas Control,2016,55: 105-117. DOI: 10.1016/j.ijggc.2016.10.016.
[26] 晏玉婷.管道泄漏后天然气在土壤中扩散过程的研究[D].北京:清华大学,2017. YAN Y T. Natural gas transport in soil for gas pipeline leakage[D]. Beijing: Tsinghua University,2017.
[27] GALLAGHER P W. Corn ethanol growth in the USA without adverse foreign land-use change: defining limits and devising policies[J]. Biofuels,Bioproducts and Biorefining,2010,4(3):296-309. DOI: 10.1002/bbb.214.
[28] 关笑坤,王蓉.影响土壤中二氧化碳浓度分布的因素分析[J].地下水,2014,36(3):18-20,23. 10.3969/j.issn.1004-1184. 2014.03.008. GUAN X K,WANG R. Study on the factors affecting carbon dioxide concentration variations in the soil[J]. Underground Water,2014,36(3): 18-20,23.
[29] BATTERMAN S,KULSHRESTHA A,CHENG H Y. Hydrocarbon vapor transport in low moisture soils[J]. Environmental Science & Technology,1995,29(1): 171-180. DOI: 10.1021/es00001a022.
[30] 王俊,封辉,高琦,王鹏.埋地管道泄漏数值模拟分析[J].科学技术与工程,2020,20(33):13660-13666. 10.3969/j.issn.1671-1815.2020.33.021. WANG J,FENG H,GAO Q,WANG P. Numerical simulation analysis of buried pipeline leakage[J]. Science Technology and Engineering,2020,20(33): 13660-13666.
[31] GUO X L,YAN X Q,ZHENG Y G,YU J L,ZHANG Y C,CHEN S Y,et al. Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline[J]. Energy,2017,119: 53-66. DOI: 10.1016/j.energy.2016.12.048.
[32] CUSSLER E L. Diffusion,mass transfer in fluid systems[M]. New York: Cambridge University Press,1997.
[33] PLAKUNOV M M,YAVUZTURK C C,CHIASSON A D. On the effects of temperature-dependent diffusion of carbon dioxide from underground coal fires[J]. Geothermics,2020,85:101768. DOI: 10.1016/j.geothermics.2019.101768.
[34] LEVINTAL E,DRAGILA M I,KAMAI T,WEISBROD N. Free and forced gas convection in highly permeable,dry porous media[J]. Agricultural and Forest Meteorology,2017,232: 469-478. DOI: 10.1016/j.agrformet.2016.10.001.
[35] SCHACHT U,JENKINS C. Soil gas monitoring of the Otway Project demonstration site in SE Victoria,Australia[J]. International Journal of Greenhouse Gas Control,2014,24: 14-29. DOI: 10.1016/j.ijggc.2014.02.007.
[36] 马俊杰,胡芊,薛璐,程萌.基于土壤和气象条件的点源泄漏CO2 土壤扩散时空变化研究[J].安全与环境学报,2022,22(5):2720-2729. 10.13637/j.issn.1009-6094.2021.1195. MA J J,HU Q,XUE L,CHENG M. Research on spatio-temporal variation characteristics of soil diffusion of CO2 leaked from CCS point source based on soil and meteorological conditions[J]. Journal of Safety and Environment,2022,22(5): 2720-2729.
[37] BAHLMANN L M,SMITS K M,HECK K,COLTMAN E,HELMIG R,NEUWEILER I. Gas component transport across the soil-atmosphere interface for gases of different density:experiments and modeling[J]. Water Resources Research,2020,56(9): e2020WR027600. DOI: 10.1029/2020WR027600.
[38] OLDENBURG C M,UNGER A J A. Coupled vadose zone and atmospheric surface-layer transport of carbon dioxide from geologic carbon sequestration sites[J]. Vadose Zone Journal,2004,3(3): 848-857. DOI: 10.2113/3.3.848.
[39] MAIER M,SCHACK-KIRCHNER H,AUBINET M,GOFFIN S,LONGDOZ B,PARENT F. Turbulence effect on gas transport in three contrasting forest soils[J]. Soil Science Society of America Journal,2012,76(5): 1518-1528. DOI:10.2136/sssaj2011.0376.
[40] MASSMAN W J. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model[J]. Journal of Geophysical Research: Biogeosciences,2006,111(G3): G03004. DOI: 10.1029/2006JG000163.
[41] MASSMAN W J,FRANK J M. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations:2. Observational evidence under snowpacks[J]. Journal of Geophysical Research: Biogeosciences,2006,111(G3): G03005. DOI: 10.1029/2006JG000164.
[42] LAEMMEL T,MOHR M,LONGDOZ B,SCHACK-KIRCHNER H,LANG F,SCHINDLER D,et al. From above the forest into the soil-How wind affects soil gas transport through air pressure fluctuations[J]. Agricultural and Forest Meteorology,2019,265: 424-434. DOI: 10.1016/j.agrformet. 2018.11.007.
[43] REICOSKY D C,GESCH R W,WAGNER S W,GILBERT R A,WENTE C D,MORRIS D R. Tillage and wind effects on soil CO2 concentrations in muck soils[J]. Soil and Tillage Research,2008,99(2): 221-231. DOI: 10.1016/j.still.2008.02.006.
[44] TAKLE E S,MASSMAN W J,BRANDLE J R,SCHMIDT R A,ZHOU X H,LITVINA I V,et al. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil[J]. Agricultural and Forest Meteorology,2004,124(3/4): 193-206. DOI: 10.1016/j.agrformet.2004.01.014.
[45] POULSEN T G,POURBER A,FURMAN A,PAPADIKIS K. Relating wind-induced gas exchange to near-surface wind speed characteristics in porous media[J]. Vadose Zone Journal,2017,16(8): 1-13. DOI: 10.2136/vzj2017.02.0039.
[46] POURBAKHTIAR A,POULSEN T G,WILKINSON S,BRIDGE J W. Effect of wind turbulence on gas transport in porous media: experimental method and preliminary results[J]. European Journal of soil Science,2017,68(1): 48-56. DOI: 10.1111/ejss.12403.
[47] POURBAKHTIAR A,POULSEN T G,FAGHIHINIA M,PAPADIKIS K,WILKINSON S. Relating wind-induced gas transport in porous media to wind speed and medium characteristics[J]. Journal of Petroleum Science and Engineering,2020,194: 107550. DOI: 10.1016/j.petrol.2020.107550.
[48] ELBERLING B,LARSEN F,CHRISTENSEN S,POSTMA D. Gas transport in a confined unsaturated zone during atmospheric pressure cycles[J]. Water Resources Research,1998,34(11):2855-2862. DOI: 10.1029/98WR02037.
[49] QI S Q,WANG Y D,WANG L W,LUO J,HOU D Y. Impact of atmospheric pressure fluctuations on nonequilibrium transport of volatile organic contaminants in the vadose zone: Experimental and numerical modeling[J]. Water Resources Research,2021,57(8): e2020WR029344. DOI: 10.1029/2020WR029344.
[50] JOUN W T,ROSSABI J,SHIN W J,LEE K K. Real-time multi-level CO2 concentration monitoring in vadose zone wells and the implication for detecting leakage events[J]. Journal of Environmental Management,2019,237: 534-544. DOI: 10.1016/j.jenvman.2019.01.052.
[51] YANG C B,ROMANAK K D,REEDY R C,HOVORKA S D,TREVINO R H. Soil gas dynamics monitoring at a CO2-EOR site for leakage detection[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2017,3(3): 351-364. DOI:10.1007/s40948-017-0053-7.
[52] LIU X,GODBOLE A,LU C,MICHAL G,LINTON V. Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies[J]. Applied Energy,2019,250: 32-47. DOI: 10.1016/j.apenergy.2019.05.017.
[53] WAREING C J,FAIRWEATHER M,FALLE S A E G,WOOLLEY R M. Modelling punctures of buried high-pressure dense phase CO2 pipelines in CCS applications[J]. International Journal of Greenhouse Gas Control,2014,29: 231-247. DOI:10.1016/j.ijggc.2014.08.012.
[54] WAREING C J,FAIRWEATHER M,FALLE S A E G,WOOLLEY R M. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications: Part I. Validation[J]. International Journal of Greenhouse Gas Control,2015,42: 701-711. DOI: 10.1016/j.ijggc.2015.01.020.
[55] WOOLLEY R M,FAIRWEATHER M,WAREING C J,PROUST C,HEBRARD J,JAMOIS D,et al. An integrated,multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain[J]. International Journal of Greenhouse Gas Control,2014,27: 221-238. DOI: 10.1016/j.ijggc.2014.06.001.
[56] WAREING C J,FAIRWEATHER M,WOOLLEY R M,FALLE S A E G. Numerical simulation of CO2 dispersion from punctures and ruptures of buried high-pressure dense phase CO2 pipelines with experimental validation[J]. Energy Procedia,2014,63: 2500-2509. DOI: 10.1016/j.egypro.2014.11.273.

相似文献/References:

[1]周祥.埋地钢质管道外涂层缺陷的安全质量分级评价[J].油气储运,2011,30(04):299.[doi:10.6047/j.issn.1000-8241.2011.04.017]
 Zhou Xiang.Safety quality grading evaluation on the external coating defects of buried steel pipeline[J].Oil & Gas Storage and Transportation,2011,30(05):299.[doi:10.6047/j.issn.1000-8241.2011.04.017]
[2]付吉强,吴明,杜明俊,等.埋地管道周围土壤湿热耦合相变过程的数值计算[J].油气储运,2011,30(01):30.[doi:10.6047/j.issn.1000-8241.2011.01.008]
 Fu Jiqiang,Wu Ming,Du Mingjun,et al.Numerical calculation on heat-moisture coupling and phase change process of the soil around buried pipeline[J].Oil & Gas Storage and Transportation,2011,30(05):30.[doi:10.6047/j.issn.1000-8241.2011.01.008]
[3]陈杨,王为民,陈伟聪,等.基于故障树与模糊理论的埋地管道风险评价[J].油气储运,2011,30(07):481.[doi:10.6047/j.issn.1000-8241.2011.07.001]
 Chen Yang,Wang Weimin,Chen Weicong,et al.Risk assessment of the buried pipeline based on the fault tree and fuzzy theory[J].Oil & Gas Storage and Transportation,2011,30(05):481.[doi:10.6047/j.issn.1000-8241.2011.07.001]
[4]胡士信,陆家榆,张本革,等.邻近强电线路管道交流干扰参数的测试方法[J].油气储运,2011,30(03):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
 Hu Shixin,Lu Jiayu,Zhang Benge,et al.Test method of AC interference parameters for pipeline adjacent power transmission lines[J].Oil & Gas Storage and Transportation,2011,30(05):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
[5]李朝阳,马贵阳,刘亮.埋地输油管道泄漏油品扩散模拟[J].油气储运,2011,30(09):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
 Li Zhaoyang,Ma Guiyang,Liu Liang,et al.Diffusion simulation on leaked oil for buried pipelines[J].Oil & Gas Storage and Transportation,2011,30(05):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
[6]王鸿膺,蒋涛,秦晓霞,等.川气东送管道土壤腐蚀埋片试验[J].油气储运,2010,29(10):769.[doi:10.6047/j.issn.1000-8241.2010.10.013]
 Wang Hongying,Jiang Tao,Qin Xiaoxia.Field Coupon Testing on the Soil Corrosivity of Sichuan-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2010,29(05):769.[doi:10.6047/j.issn.1000-8241.2010.10.013]
[7]薛致远,张丰,毕武喜,等.东北管网阴极保护通电/断电电位测量与分析[J].油气储运,2010,29(10):772.[doi:10.6047/j.issn.1000-8241.2010.10.014]
 Xue Zhiyuan,Zhang Feng,Bi Wuxi.The Measurement and Analysis of On/Off-potential in Northeast Oil Pipeline Networks[J].Oil & Gas Storage and Transportation,2010,29(05):772.[doi:10.6047/j.issn.1000-8241.2010.10.014]
[8]刘仕鳌 蒲红宇 刘书文 蒋洪.埋地管道应力分析方法[J].油气储运,2012,31(4):274.[doi:10.6047/j.issn.1000-8241.2012.04.009]
 Liu Shiao,Pu Hongyu,Liu Shuwen,et al.Stress analysis method of buried pipeline[J].Oil & Gas Storage and Transportation,2012,31(05):274.[doi:10.6047/j.issn.1000-8241.2012.04.009]
[9]吴峰,李向阳,张治军.埋地参数对管道同沟敷设传热的影响[J].油气储运,2010,29(11):835.[doi:10.6047/j.issn.1000-8241.2010.11.009]
 Wu Feng,Li Xiangyang,Zhang Zhijun.Influence of Buried Parameters for Heat Transfer of Pipelines Laid in One Ditch[J].Oil & Gas Storage and Transportation,2010,29(05):835.[doi:10.6047/j.issn.1000-8241.2010.11.009]
[10]赵雄,周卫军,郭瑞.SPAE评价法在管道防腐层性能评价中的应用[J].油气储运,2009,28(11):54.[doi:10.6047/j.issn.1000-8241.2009.11.015]
 ZHAO Xiong,ZHOU Weijun.Application of SPAE Method in Coating Performance Evaluation of Pipelines[J].Oil & Gas Storage and Transportation,2009,28(05):54.[doi:10.6047/j.issn.1000-8241.2009.11.015]

备注/Memo

张俊朋,男,1990年生,工程师,2022年博士毕业于中国矿业大学(北京)安全科学与工程专业,现主要从事CO2管道输送安全方面的研究工作。地址:山东省东营市东营区济南路49号,257026。电话:19801370723。Email:sdbzzjp@126.com
基金项目:中石化石油工程设计有限公司科研项目“超临界压力下埋地密相CO2管道小孔泄漏扩散特征研究”,BH2023-1。
· Received: 2023-04-22 · Revised: 2023-06-17 · Online: 2024-03-27

更新日期/Last Update: 2024-05-25