[1]付雅茹,张东,闫锋,等.CO2管道裂纹韧性扩展速度数值模拟[J].油气储运,2024,43(04):395-403.[doi:10.6047/j.issn.1000-8241.2024.04.004]
 FU Yaru,ZHANG Dong,YAN Feng,et al.Numerical simulation of ductile crack propagation velocity in CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(04):395-403.[doi:10.6047/j.issn.1000-8241.2024.04.004]
点击复制

CO2管道裂纹韧性扩展速度数值模拟

参考文献/References:

[1] 郭克星,闫光龙,张阿昱,席敏敏,牛爱军. CO2捕集、利用与封存技术及CO2管道研究现状与发展[J].天然气与石油,2023, 41(1):28-40. 10.3969/j.issn.1006-5539.2023.01.005. GUO K X, YAN G L, ZHANG A Y, XI M M, NIU A J. Status quo and development of the research on CO2 capture, utilization and storage technology and CO2 pipeline[J]. Natural Gas and Oil, 2023, 41(1): 28-40.
[2] 王一新,陆诗建,李卫东,滕霖.基于物理模型驱动的机器学习方法预测超临界二氧化碳管道最大泄漏速率[J].石油科学通报, 2023,8(1):102-111. DOI: 10.3969/j.issn.2096-1693.2023.01.007. WANG Y X, LU S J, LI W D, TENG L. A physical model driven machine learning for predicting maximum leakage rate in supercritical CO2 release[J]. Petroleum Science Bulletin, 2023, 8(1): 102-111.
[3] 陈俊文,汤晓勇,刘勇,陈杰,胡其会,李玉星,等.超临界CO2管道破裂泄漏影响探讨[J].天然气与石油,2023,41(2):1-8. 10.3969/j.issn.1006-5539.2023.02.001. CHEN J W, TANG X Y, LIU Y, CHEN J, HU Q H, LI Y X, et al. Discussion on the impact of supercritical CO2 pipeline rupture leakage[J]. Natural Gas and Oil, 2023, 41(2): 1-8.
[4] 陈兵,徐梦林,齐文娇.基于CCUS的CO2管道延性断裂机理及止裂控制研究进展[J].焊管,2022,45(9):1-10. 10.19291/j.cnki.1001-3938.2022.09.001. CHEN B, XU M L, QI W J. Research progress on ductile fracture mechanism and crack arrest control of CO2 pipeline based on CCUS[J]. Welded Pipe and Tube, 2022, 45(9): 1-10.
[5] AURSAND E, DUMOULIN S, HAMMER M, LANGE H I, MORIN A, MUNKEJORD S T, et al. Fracture propagation control in CO2 pipelines: Validation of a coupled fluid-structure model[J]. Engineering Structures, 2016, 123: 192-212. DOI:10.1016/j.engstruct.2016.05.012.
[6] COSHAM A, JONES D G, ARMSTRONG K, ALLASON D, BARNETT J. Analysis of two dense phase carbon dioxide full-scale fracture propagation tests[C]. Calgary: 2014 10th International Pipeline Conference, 2014: V003T07A003.
[7] COSHAM A, JONES D G, ARMSTRONG K, ALLASON D, BARNETT J. Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipe[C]. Calgary: 2016 11th International Pipeline Conference, 2016:V003T05A012.
[8] DI BIAGIO M, LUCCI A, MECOZZI E, SPINELLI C M. Fracture propagation prevention on CO2 pipelines: Full scale experimental testing and verification approach[C]. Berlin:Pipeline Technology Conference 2017, 2017: 1-17.
[9] LINTON V, LEINUM B H, NEWTON R, FYRILEIV O.CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines: Part 1: project overview and outcomes of test 1[C]. Calgary: 2018 12th International Pipeline Conference, 2018: V003T05A008.
[10] MICHAL G, DAVIS B, ?STBY E, LU C, R?NEID S. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines: Part 2: Is the BTCM out of touch with dense-phase CO2?[C]. Calgary: 2018 12th International Pipeline Conference, 2018: V003T05A009.
[11] GODBOLE A, LIU X, MICHAL G, LU C, MEDINA C H. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines: Part 3: dispersion modelling[C]. Calgary: 2018 12th International Pipeline Conference, 2018:V002T07A020.
[12] BOTROS K K, CLAVELLE E J, UDDIN M, WILKOWSKI G, GUAN C. Next generation ductile fracture arrest analyses for high energy pipelines based on detail coupling of CFD and FEA approach[C]. Calgary: 2018 12th International Pipeline Conference, 2018: V003T05A002.
[13] MARTYNOV S B, TALEMI R H, BROWN S, MAHGEREFTEH H. Assessment of fracture propagation in pipelines transporting impure CO2 streams[J]. Energy Procedia, 2017, 114: 6685-6697. DOI: 10.1016/j.egypro.2017.03.1797.
[14] MICHAL G, ?STBY E, DAVIS B J, R?NEID S, LU C. An empirical fracture control model for dense-phase CO2 carrying pipelines[C]. Virtual: 2020 13th International Pipeline Conference, 2020: V003T05A005.
[15] NONN A. Analysis of dynamic ductile fracture propagation in pipeline steels: a damage-mechanics’ approach[C]. Ostend: 6th International Pipeline Technology Conference, 2013: S34-01.
[16] SANTOS PEREIRA L D, MO?O R F, BOLOGNESI DONATO G H. Ductile fracture of advanced pipeline steels:study of stress states and energies in dynamic impact specimens-CVN and DWTT[J]. Procedia Structural Integrity, 2018, 13:1985-1992. DOI: 10.1016/j.prostr.2018.12.219.
[17] R?THOR? J, GRAVOUIL A, COMBESCURE A. An energy-conserving scheme for dynamic crack growth using the eXtended finite element method[J]. International Journal for Numerical Methods in Engineering, 2005, 63(5): 631-659. DOI: 10.1002/nme.1283.
[18] SCHEIDER I, SCH?DEL M, BROCKS W, SCH?NFELD W.Crack propagation analyses with CTOA and cohesive model:Comparison and experimental validation[J]. Engineering Fracture Mechanics, 2006, 73(2): 252-263. DOI: 10.1016/j.engfracmech. 2005.04.005.
[19] ANVARI M, SCHEIDER I, THAULOW C. Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements[J]. Engineering Fracture Mechanics, 2006, 73(15): 2210-2228. DOI: 10.1016/j.engfracmech.2006.03.016.
[20] NONN A, KALWA C. Simulation of ductile crack propagation in high-strength pipeline steel using damage models[C]. Calgary:2012 9th International Pipeline Conference, 2012: 597-603.
[21] HOJJATI-TALEMI R, COOREMAN S, VAN HOECKE D. Finite element simulation of dynamic brittle fracture in pipeline steel: A XFEM-based cohesive zone approach[J]. Institution of Mechanical Engineers, Part L: Journal of Materials:Design and Applications, 2018, 232(5): 357-370. DOI:10.1177/1464420715627379.
[22] DUNBAR A, WANG X, TYSON W R, XU S. Simulation of ductile crack propagation and determination of CTOAs in pipeline steels using cohesive zone modelling[J]. Fatigue &Fracture of Engineering Materials & Structures, 2014, 37(6):592-602. DOI: 10.1111/ffe.12143.
[23] PARMAR S, BASSINDALE C, WANG X, TYSON W R, SU X. Simulation of ductile fracture in pipeline steels under varying constraint conditions using cohesive zone modeling[J]. International Journal of Pressure Vessels and Piping, 2018, 162:86-97. DOI: 10.1016/j.ijpvp.2018.03.003.
[24] ZHU X H, DENG Z L, LIU W J. Dynamic fracture analysis of buried steel gas pipeline using cohesive model[J]. Soil Dynamics and Earthquake Engineering, 2020, 128: 105881. DOI: 10.1016/j.soildyn.2019.105881.
[25] 王炜.基于内聚力模型的高钢级管线钢裂纹扩展多尺度研究[D].西南石油大学,2020. WANG W. Multi-scale study on crack propagation of high-grade pipeline steel based on cohesive zone model[D].Southwest petroleum university, 2020.
[26] 魏超. 基于内聚力模型的压裂泵泵头体裂纹扩展规律研究[D].长江大学,2019. WEI C. Research on crack propagation law of fracturing pump head based on cohesive zone model[D]. Yangtze university,2019.
[27] 顾帅威.不同相态CO2管道减压过程流动与温降特性研究[D].青岛:中国石油大学(华东),2019. GU S W. A study on the flow characteristics and temperature drop of CO2 pipelines in different phase states[D]. Qingdao:China University of Petroleum (East China), 2019.

相似文献/References:

[1]帅健,张宏,许葵.输气管道裂纹动态扩展的数值模拟[J].油气储运,2004,23(8):5.[doi:10.6047/j.issn.1000-8241.2004.08.002]
 SHUAI Jian,ZHANG Hong.Numerical Simulation of Crack Propagation in Gas Transmission Pipeline[J].Oil & Gas Storage and Transportation,2004,23(04):5.[doi:10.6047/j.issn.1000-8241.2004.08.002]
[2]蒋云,吕英民.X52管材的疲劳裂纹扩展速率试验研究[J].油气储运,1999,18(8):52.[doi:10.6047/j.issn.1000-8241.1999.08.018]
 Jiang Yun,Lv Yingmin.Test and Research on Fatigue Crack Growth Rate da/dN of X52 Petroleum Pipe Product[J].Oil & Gas Storage and Transportation,1999,18(04):52.[doi:10.6047/j.issn.1000-8241.1999.08.018]
[3]郭磊,姜珊,彭常飞,等.X80 与X100 级管线钢裂纹扩展模拟分析[J].油气储运,2014,33(10):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
 GUO Lei,JIANG Shan,PENG Changfei,et al.A simulation analysis of crack growth for X80 and X100 pipeline steels[J].Oil & Gas Storage and Transportation,2014,33(04):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
[4]李丽锋,罗金恒,张超,等.CNG储气瓶物理爆炸裂纹动态扩展特性[J].油气储运,2022,41(10):1181.[doi:10.6047/j.issn.1000-8241.2022.10.008]
 LI Lifeng,LUO Jinheng,ZHANG Chao,et al.Dynamic crack propagation characteristics of CNG tanks during physical explosion[J].Oil & Gas Storage and Transportation,2022,41(04):1181.[doi:10.6047/j.issn.1000-8241.2022.10.008]
[5]殷布泽,黄维和,苗青,等.CO2管道泄漏减压特性与裂纹扩展研究现状及发展趋势[J].油气储运,2023,42(09):1042.[doi:10.6047/j.issn.1000-8241.2023.09.008]
 YIN Buze,HUANG Weihe,MIAO Qing,et al.Status and development trends of research on CO2 decompression characteristics and crack propagation[J].Oil & Gas Storage and Transportation,2023,42(04):1042.[doi:10.6047/j.issn.1000-8241.2023.09.008]
[6]范玉然 帅义 帅健 张铁耀 任飞.管道环焊缝根焊部位应变及微区力学性能对裂纹扩展的影响[J].油气储运,2024,43(02):1.
 FAN Yuran,SHUAI Yi,SHUAI Jian,et al.Research on the Influence of Strain and Mechanical Properties of Micro zone on Crack Propagation at the Root of Pipeline Girth Weld[J].Oil & Gas Storage and Transportation,2024,43(04):1.
[7]范玉然,帅义,帅健,等.管道环焊缝根焊部位应变及微区力学性能对裂纹扩展的影响[J].油气储运,2024,43(02):171.[doi:10.6047/j.issn.1000-8241.2024.02.006]
 FAN Yuran,SHUAI Yi,SHUAI Jian,et al.Influence of strain and micro-zone mechanical properties at root beads around girth welds on crack propagation[J].Oil & Gas Storage and Transportation,2024,43(04):171.[doi:10.6047/j.issn.1000-8241.2024.02.006]
[8]付雅茹 张东 闫锋 王熠凡 白芳 张宏 刘啸奔.二氧化碳管道裂纹韧性扩展速度数值模拟[J].油气储运,2024,43(04):1.
 FU Yaru,ZHANG Dong,YAN Feng,et al.Numerical simulation study on crack ductile propagation velocity of CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(04):1.

备注/Memo

付雅茹,女,1999年生,在读硕士生,2021年毕业于太原理工大学安全工程专业,现主要从事油气装备失效分析与完整性管理等方向的研究工作。地址:北京市昌平区府学路18号,102249。电话:15148463155。Email:fffuyaru@163.com
通信作者:刘啸奔,男,1991年生,副教授,2018年博士毕业于中国石油大学(北京)安全科学与工程专业,现主要从事油气储运设施结构强度与完整性评价技术的教学与科研工作。地址:北京市昌平区府学路18号,102249。电话:010-89731239。Email:xiaobenliu@cup.edu.cn
基金项目:国家重点研发计划“中俄管道重大风险防控与安全保障关键技术”,2022YFC3070100;国家自然科学基金资助项目“逆断层作用下X80管道屈曲演化与韧性破损机理研究”,52004314;北京市科协“青年人才托举工程”项目“高钢级管道环焊缝可靠性评价方法研究”,BYESS2023261;国家管网科学研究与技术开发项目“高钢级管道环焊缝失效机理研究”,WZXGL202105;国家管网科学研究与技术开发项目“高钢级管道环焊缝缺陷检测评价技术研究”,WZXGL202104;中国石油大学(北京)科研基金资助项目“掺氢管道环焊缝失效机理与评价方法研究”,2462023BJRC005。
· Received: 2023-07-05 · Revised: 2023-08-08 · Online: 2024-03-13

更新日期/Last Update: 2024-04-25