[1]牛帅帅,赵杰,李敬法,等.液氢低温输送管道环空绝热技术研究进展[J].油气储运,2024,43(04):373-386.[doi:10.6047/j.issn.1000-8241.2024.04.002]
 NIU Shuaishuai,ZHAO Jie,LI Jingfa,et al.Research progress of annulus insulation technology for cryogenic liquid hydrogen pipelines[J].Oil & Gas Storage and Transportation,2024,43(04):373-386.[doi:10.6047/j.issn.1000-8241.2024.04.002]
点击复制

液氢低温输送管道环空绝热技术研究进展

参考文献/References:

[1] 李建林,李光辉,马速良,宋洁.氢能储运技术现状及其在电力系统中的典型应用[J].现代电力,2021,38(5):535-545. 10.19725/j.cnki.1007-2322.2021.0023. LI J L, LI G H, MA S L, SONG J. An overview on hydrogen energy storage and transportation technology and its typical application in power system[J]. Modern Electric Power, 2021, 38(5): 535-545.
[2] 饶永超,胡勇,王树立,李飞,苏文娟.液氢储运技术发展现状及存在问题[J].现代化工,2023,43(6):6-11. 10.16606/j.cnki. issn0253-4320.2023.06.002. RAO Y C, HU Y, WANG S L, LI F, SU W J. Development status and existing problems of liquid hydrogen storage and transportation technologies[J]. Modern Chemical Industry, 2023, 43(6): 6-11.
[3] 陈晓露,刘小敏,王娟,张邦强,杨海波,杨燕梅,等.液氢储运技术及标准化[J].化工进展,2021,40(9):4806-4814. 10.16085/j.issn.1000-6613.2021-0162. CHEN X L, LIU X M, WANG J, ZHANG B Q, YANG H B, YANG Y M, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814.
[4] 商燕.液氢输送管道振动与流动压降特性研究[D].武汉:华中科技大学,2018. SHANG Y. Study on vibration and flow pressure drop characteristics of liquid hydrogen transport pipeline[D]. Wuhan:Huazhong University of Science and Technology, 2018.
[5] 雷刚,陈虹,孙庆国,刘岩云.液氢长距离管路输送可行性分析[C].合肥:第九届全国低温工程大会,2009:380-383. LEI G, CHEN H, SUN Q G, LIU Y Y. Feasibility analysis on long-distance hydrogen transfer with cryogenic pipeline[C]. Hefei: The 9th National Cryogenic Engineering Conference, 2009:380-383.
[6] 韩战秀,王海峰,李艳侠.液氢加注管道设计研究[J].航天器环境工程,2009,26(6):561-564. 10.3969/j.issn.1673-1379.2009. 06.013. HAN Z X, WANG H F, LI Y X. Design of liquid hydrogen injection tubes[J]. Spacecraft Environment Engineering, 2009, 26(6): 561-564.
[7] 陈虹,郑尧,常华伟,陈建业,商燕,舒水明.振动对水平管内液氢两相流影响的数值模拟[J].低温与超导,2018,46(5):8-12. 10.16711/j.1001-7100.2018.05.002. CHEN H, ZHENG Y, CHANG H W, CHEN J Y, SHANG Y, SHU S M. Numerical simulation of liquid hydrogen two-phase flow in horizontal vibrating tube[J]. Cryogenics and Superconductivity, 2018, 46(5): 8-12.
[8] 蒲亮,余海帅,代明昊,何永琛,孙若凡,严童童.氢的高压与液化储运研究及应用进展[J].科学通报,2022,67(19):2172-2191. 10.1360/TB-2022-0063. PU L, YU H S, DAI M H, HE Y C, SUN R F, YAN T T. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese Science Bulletin, 2022, 67(19): 2172-2191.
[9] 徐烈.我国低温绝热与贮运技术的发展与应用[J].低温工程, 2001(2):1-8. 10.3969/j.issn.1000-6516.2001.02.001. XU L. The advance and application of cryoinsulation and cryostorgae-transportation technology in our country[J]. Cryogenics, 2001(2): 1-8.
[10] 康志远,林洁.真空多层绝热管道技术现状[J].机电产品开发与创新,2018,31(2):17-19. 10.3969/j.issn.1002-6673. 2018.02.006. KANG Z Y, LIN J. The prospect of vacuum multilayer insulated pipe[J]. Development & Innovation of Machinery & Electrical Products, 2018, 31(2): 17-19.
[11] 黄欢明,潘卫明,冯慧华.低温容器支承结构的装配状态对支承功能的影响[J].低温工程,2012(4):44-49. 10.3969/j.issn.1000-6516.2012.04.009. HUANG H M, PAN W M, FENG H H. Impact investigation of assembly status on supporting function for cryogenic vessel’s bearing structure[J]. Cryogenics, 2012(4): 44-49.
[12] 杨存志.低温传输管线的设计与研究[J].深冷技术,2005(3):11-14. 10.3969/j.issn.978-7-807.2005.03.003. YANG C Z. Design and research of cryogenic transfer lines[J]. Cryogenic Technology, 2005(3): 11-14.
[13] 王莉,汤洪明,张小斌,刘孝坤,刘崇山,贾林祥.北京正负电子对撞机重大改造低温传输管线支撑数值模拟[J].低温工程, 2006(2):35-40,49. 10.3969/j.issn.1000-6516.2006.02.008. WANG L, TANG H M, ZHANG X B, LIU X K, LIU C S,JIA L X. Numerical simulation of the supports of cryogenic transfer lines in Beijing Electron-Positron Collider Upgrade[J]. Cryogenics, 2006(2): 35-40, 49.
[14] 张财功,李长俊,贾文龙,何乾伟.基于稳态热-结构耦合的低温管道绝热支撑研究[J]. 低温工程,2018(6):47-53. 10.3969/j.issn.1000-6516.2018.06.009. ZHANG C G, LI C J, JIA W L, HE Q W. Study of adiabatic support on cryogenic pipelines based on steady-state thermal-structural coupling[J]. Cryogenics, 2018(6): 47-53.
[15] 毛红威,陈叔平,杨佳卉,刘福录.基于有限元方法的L型低温管道传热及强度分析[J].低温与超导,2016,44(9):18-23. 10.16711/j.1001-7100.2016.09.005. MAO H W, CHEN S P, YANG J H, LIU F L. Heat transfer and stress analysis of L type cryogenic pipe based on finite element method[J]. Cryogenics and Superconductivity, 2016, 44(9): 18-23.
[16] 艾丽斯佳,胡石林,储诚节,吴全锋.液氢温区下单温区双管道绝热支撑的热-结构耦合研究分析[J].低温工程,2022(2):54-58,64. 10.3969/j.issn.1000-6516.2022.02.009. AI L S J, HU S L, CHU C J, WU Q F. Thermal structural coupling analysis of double pipe heat insulation support in single temperature zone of liquid hydrogen[J]. Cryogenics, 2022(2):54-58, 64.
[17] 于兰,刘瑞敏.大口径液氢真空输送管的研制[J].低温工程, 2008(2):51-54. 10.3969/j.issn.1000-6516.2008.02.013. YU L, LIU R M. Design of large caliber liquid hydrogen vacuum pipe[J]. Cryogenics, 2008(2): 51-54.
[18] 邓笔财,谢秀娟,杨少柒,张宇,李青.多层绝热和支撑辐射对低温传输管线的影响分析[J].低温工程,2015(2):51-56. 10.3969/j.issn.1000-6516.2015.02.010. DENG B C, XIE X J, YANG S Q, ZHANG Y, LI Q. Analysis of effects of multi-layer insulation and support radiation on cryogenic transfer lines[J]. Cryogenics, 2015(2): 51-56.
[19] HOSOYAMA K, HARA K, KABE A, KOJIMA Y, MORITA Y, NAKAI H, et al. Development of a high performance transfer line system[M]//SHU Q S. Advances in cryogenic engineering. Boston: Springer, 2000: 1395-1402.
[20] 邓笔财.复合低温传输管线的真空多层绝热机理及传热特性研究[D].北京:中国科学院大学,2019. DENG B C. Research on vacuum multilayer insulation mechanism and heat transfer characteristics of multiple cryogenic transfer line[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[21] 于春柳,郑旭东,任金平,马志鹏,王妍.直角型高真空多层绝热低温管道热结构耦合分析[J].低温与超导,2016,44(7):19-23. 10.16711/j.1001-7100.2016.07.005. YU C L, ZHENG X D, REN J P, MA Z P, WANG Y. Thermal-structure coupled analysis of right-angle cryogenic pipeline with high-vacuum multilayer insulation[J]. Cryogenics and Superconductivity, 2016, 44(7): 19-23.
[22] 苏楠子.低温储罐真空度对绝热性能影响的研究[J].中国标准化,2018(增刊1):49-54. 10.3969/j.issn.1002-5944.2018. z1.010. SU N Z. The effect of vacuum of cryogenic tank on insulation performance[J]. China Standardization, 2018(S1): 49-54.
[23] 王鑫,陈叔平,朱鸣,吴宗礼,赵高逸,刘亚楠.高真空多层绝热夹层稀薄气体传热分析[J].低温与超导,2021,49(12):1-6, 41. 10.16711/j.1001-7100.2021.12.001. WANG X, CHEN S P, ZHU M, WU Z L, ZHAO G Y, LIU Y N. Heat transfer analysis of rarefied gas with high vacuum multilayer insulation in annular space[J]. Cryogenics and Superconductivity, 2021, 49(12): 1-6, 41.
[24] 崔晨,郑建朋,陈六彪,郭嘉,周远,王俊杰.大口径低温管道变工况漏热特性分析与优化[J].低温工程,2019(3):25-28. 10.3969/j.issn.1000-6516.2019.03.005. CUI C, ZHENG J P, CHEN L B, GUO J, ZHOU Y, WANG J J. Analysis and optimization of heat leakage characteristics of large diameter cryogenic tube under variable working conditions[J]. Cryogenics, 2019(3): 25-28.
[25] 熊珍艳,罗若尹,王博,黄政贤,卢海,何远新,等.低温液体储运装备真空表征与监测研究[J].低温工程,2020(4):7-11,24. 10.3969/j.issn.1000-6516.2020.04.002. XIONG Z Y, LUO R Y, WANG B, HUANG Z X, LU H, HE Y X, et al. Vacuum characterization and monitoring of cryogenic liquid transportation and storage equipment[J]. Cryogenics, 2020(4): 7-11, 24.
[26] 程进杰,朱建炳,李正清.低温容器高真空多层绝热性能分析[J]. 低温与超导,2013,41(2):11-14. 10.3969/j.issn. 1001-7100.2013.02.003. CHENG J J, ZHU J B, LI Z Q. Analysis on the performance of high vacuum multilayer insulation for cryogenic storage vessel[J]. Cryogenics and Superconductivity, 2013, 41(2): 11-14.
[27] 何燚,陈传宝.真空多层绝热管道夹层真空度变化研究[C].兰州:第十届全国低温工程大会暨中国航天低温专业信息网2011年度学术交流会,2011:389-392. HE Y, CHEN C B. Study on the change of vacuum degree in the interlayer of vacuum multilayer insulated pipes[C]. Lanzhou: The 10th National Low Temperature Engineering Conference and the 2011 Academic Exchange Conference of China Aerospace Low Temperature Professional Information Network, 2011: 389-392.
[28] IKEMOTO N, KAWAKAMI T, YONEHARA K, NATORI Y, TATENUMA K, HARA M. Adsorption of hydrogen and deuterium on A-type zeolites at 77 K after various heat treatments[J]. Fusion Engineering and Design, 2020, 158:111701. DOI: 10.1016/j.fusengdes.2020.111701.
[29] WANG J, ZHAN Y, WANG W, WANG R S. Optimization and performance of highly efficient hydrogen getter applied in high vacuum multilayer insulation cryogenic tank[J]. Vacuum, 2018, 149: 87-92. DOI: 10.1016/j.vacuum.2017.12.009.
[30] 杨凯,及蕊,蔡永风,李兴敏.影响高真空多层绝热低温性能的主要因素分析及应对措施[J].中国化工装备,2020,22(6):15-19. 10.3969/j.issn.1671-0525.2020.06.004. YANG K, JI R, CAI Y F, LI X M. Analysis of main factors affecting thermal insulation performance of high vacuum multilayer and corresponding measures[J]. China Chemical Industry Equipment, 2020, 22(6): 15-19.
[31] LI P, CHENG H E. Thermal analysis and performance study for multilayer perforated insulation material used in space[J]. Applied Thermal Engineering, 2006, 26(16): 2020-2026. DOI:10.1016/j.applthermaleng.2006.01.004.
[32] 郭志钒,巨永林.低温液氢储存的现状及存在问题[J].低温与超导,2019,47(6):21-29. 10.16711/j.1001-7100.2019.06.004. GUO Z F, JU Y L. Status and problems of cryogenic liquid hydrogen storage[J]. Cryogenics and Superconductivity, 2019, 47(6): 21-29.
[33] HUANG Y H, WANG B, ZHOU S H, WU J Y, LEI G, LI P, et al. Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage[J]. Energy, 2017, 123: 487-498. DOI: 10.1016/j.energy.2017.01.147.
[34] 高云飞,王博,王浩任,孙潇,李睿泽,徐旭,等.液氢温区真空多层绝热材料研究进展[J].低温工程,2021(6):12-21.10.3969/j.issn.1000-6516.2021.06.002. GAO Y F, WANG B, WANG H R, SUN X, LI R Z, XU X, et al. Progress of vacuum multilayer insulation materials at liquid hydrogen temperatures[J]. Cryogenics, 2021(6): 12-21.
[35] 王苗,冯军宗,姜勇刚,张忠明,冯坚.多层隔热材料的研究进展[J].材料导报,2016,30(增刊2):461-465. WANG M,FENG J Z,JIANG Y G,ZHANG Z M,FENG J. Adcance in research of multi-layer insulation materials[J]. Materials Reports, 2016, 30(S2): 461-465.
[36] 王建军.多层绝热材料表观导热系数测试装置的研制及实验研究[D].杭州:浙江大学,2021. WANG J J. Development and experimental study of the device for measuring apparent thermal conductivity of multilayer insulation materials[D]. Hangzhou: Zhejiang University, 2021.
[37] KELLER C W, CUNNINGTON G R, GLASSFORD A P. Thermal performance of multilayer insulations: NASA-CR-134477[R]. Cleveland: NASA Lewis Research Center, 1974: 1-23.
[38] BLACK I A, FOWLE A A, GLASER P E. Development of high-efficiency insulation[M]//TIMMERHAUS K D. Advances in cryogenic engineering. Boston: Springer, 1960: 181-188.
[39] CUNNINGTON G, TIEN C. A study of heat-transfer processes in multilayer insulations[C]. San Francisco: 4th Thermophysics Conference, 1969: AIAA 1969-607.
[40] TIEN C L, CUNNINGTON G R. Cryogenic insulation heat transfer[J]. Advances in Heat Transfer, 1973, 9: 349-417. DOI:10.1016/S0065-2717(08)70065-0.
[41] BELL G A, NAST T C, WEDEL R K. Thermal performance of multilayer insulation applied to small cryogenic tankage[M]//TIMMERHAUS K D, REED R P, CLARK A F. Advances in Cryogenic Engineering. Boston: Springer, 1977: 272-282.
[42] MATSUDA A, YOSHIKIYO H. Simple structure insulating material properties for multilayer insulation[J]. Cryogenics, 1980, 20(3): 135-138. DOI: 10.1016/0011-2275(80)90007-7.
[43] MCINTOSH G E. Layer by layer MLI calculation using a separated mode equation[M]//KITTEL P. Advances in cryogenic engineering. Boston: Springer, 1994: 1683-1690.
[44] KRISHNAPRAKAS C K, BADARI NARAYANA K, DUTTA P. Heat transfer correlations for multilayer insulation systems[J]. Cryogenics, 2000, 40(7): 431-435. DOI: 10.1016/S0011-2275(00)00048-5.
[45] HEDAYAT A, HASTINGS L J, BROWN T. Analytical modeling of variable density multilayer insulation for cryogenic storage[J]. AIP Conference Proceedings, 2002, 613(1): 1557-1564. DOI: 10.1063/1.1472190.
[46] 肖志宏,汪荣顺,石玉美,顾安忠.应用逐层传热模型分析高真空多层绝热中的传热过程[J].真空科学与技术学报,2004, 24(2):113-117. 10.3969/j.issn.1672-7126.2004.02.008. XIAO Z H, WANG R S, SHI Y M, GU A Z. Theoretical analysis of heat transfer of high vacuum multi-layers[J]. Chinese Journal of Vacuum Science and Technology, 2004, 24(2): 113-117.
[47] CHEN J J, YU W D. A numerical analysis of heat transfer in an evacuated flexible multilayer insulation material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(3): 1183-1188. DOI: 10.1007/s10973-010-0683-2.
[48] JOHNSON W L. Optimization of layer densities for multilayered insulation systems[J]. AIP Conference Proceedings, 2010, 1218(1): 804-811. DOI: 10.1063/1.3422434.
[49] 张安,闫春杰,陈联,冶文莲.基于Lockheed模型的变密度多层绝热理论分析与实验[J].真空与低温,2013,19(2):90-94. 10.3969/j.issn.1006-7086.2013.02.006. ZHANG A, YAN C J, CHEN L, YE W L. Computational analysis of variable density multilayer insulation based on the lockheed model[J]. Vacuum and Cryogenics, 2013, 19(2): 90-94.
[50] WANG B, HUANG Y H, LI P, SUN P J, CHEN Z C, WU J Y. Optimization of variable density multilayer insulation for cryogenic application and experimental validation[J]. Cryogenics, 2016, 80(Part 1): 154-163. DOI: 10.1016/j.cryogenics. 2016.10.006.
[51] 许张良,谭宏博,吴昊.变密度多层低温绝热结构的性能比较与分析[J].工程热物理学报,2023,44(5):1357-1365. XU Z L, TAN H B, WU H. Comparative study on the thermal insulation performance of different variable density multi-layer insulation structures[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1357-1365.
[52] 徐夏凡,陈六彪,郑建朋,王俊杰.航天器变密度多层绝热变工况漏热特性研究[J].真空与低温,2020,26(4):295-300. 10.3969/j.issn.1006-7086.2020.04.007. XU X F, CHEN L B, ZHENG J P, WANG J J. Study on the heat leakage characteristics of spacecraft variable density multilayer under variable operating conditions[J]. Vacuum and Cryogenics, 2020, 26(4): 295-300.
[53] BAPAT S L, NARAYANKHEDKAR K G, LUKOSE T P. Performance prediction of multilayer insulation[J]. Cryogenics, 1990, 30(8): 700-710. DOI: 10.1016/0011-2275(90)90234-4.
[54] 史亚刚.真空条件下低温绝热材料放气特性研究[D].兰州:兰州理工大学,2022. SHI Y G. Research on outgassing characteristics of cryogenics insulation materials under vacuum condition[D]. Lanzhou:Lanzhou University of Technology, 2022.
[55] WATANABE H, IVANOV Y V, HAMABE M, CHIKUMOTO N, TAKANO H, YAMAGUCHI S. Thermal insulation test of new designed cryogenic pipes for the superconducting DC power transmission system in Ishikari, Japan[J]. Physics Procedia, 2015, 67: 239-244. DOI: 10.1016/j.phpro.2015.06.081.
[56] 邓笔财,谢秀娟,杨少柒,李青.多通道液氦低温传输管线的设计及漏热量模拟[J].华中科技大学学报(自然科学版),2020, 48(2):6-10. 10.13245/j.hust.200202. DENG B C, XIE X J, YANG S Q, LI Q. Structural design and simulation research of heat leakage for multi-channel liquid helium cryogenic transfer lines[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(2): 6-10.
[57] SHU Q S, FAST R W, HART H L. An experimental study of heat transfer in multilayer insulation systems from room temperature to 77 K[M]//FAST R W. Advances in cryogenic engineering. Boston: Springer, 1986: 455-463.
[58] HYDE E H. Multilayer insulation thermal protection systems technology[J]. Cryogenic Research at MSFC: Research Achievements Review, 1971, 4(2): 5-52.
[59] STUCKEY J M. Multilayer high performance insulation materials[J]. Cryogenic Research at MSFC: Research Achievements Review, 1971, 4(2): 93-97.
[60] JOHNSON W L. Thermal performance of cryogenic multilayer insulation at various layer spacings: KSC-2010-181[R]. Hanover: NASA Center for AeroSpace Information, 2010: 1-13.
[61] JOHNSON W. Thermal analysis of low layer density multilayer insulation test results[J]. AIP Conference Proceedings, 2012, 1434(1): 1519-1526. DOI: 10.1063/1.4707081.
[62] 周志雄.高真空多层绝热中接触导热数值计算和实验研究[D].上海:上海交通大学,2007. ZHOU Z X. Numerical calculation and experimental study on thermal contact conductance in multi-layer insulation[D]. Shanghai: Shanghai Jiao Tong University, 2007.
[63] 马晓勇,陈叔平,金树峰,朱鸣,王洋,熊珍艳,等.低温容器用多层绝热材料的绝热性能研究进展[J].材料导报,2024, 38(1):242-252. 10.11896/cldb.22050027. MA X Y, CHEN S P, JIN S F, ZHU M, WANG Y, XIONG Z Y, et al. Advance in research on thermal insulation performance of multilayer insulation materials for cryogenic vessels[J]. Materials Reports, 2024, 38(1): 242-252.
[64] 高兆江,王鑫,朱鸣.高真空多层绝热材料层数对绝热性能影响[J].低温与超导,2023,51(8):38-45. 10.16711/j.1001-7100.2023.08.007. GAO Z J,WANG X,ZHU M. Effect of the layer number on performance of high vacuum multilayer thermal insulation material[J]. Cryogenics & Superconductivity, 2023, 51(8):38-45.
[65] 王裕博,赵玉杰,余萌,孙小伟,张镇,金苏柯,等.液氢用低温复合多层绝热材料的传热特性研究[J].低温工程,2023(6):33-39. 10.3969/j.issn.1000-6516.2023.06.005. WANG Y B,ZHAO Y J,YU M,SUN X W,ZHANG Z, JIN S K,et al. Research on heat transfer characteristics of composite multi-layer insulation material under liquid hydrogen temperature range[J]. Cryogenics, 2023(6): 33-39.
[66] HEDAYAT A, HASTINGS L J, BRYANT C, PLACHTA D W. Large scale demonstration of liquid hydrogen storage with zero boiloff[J]. AIP Conference Proceedings, 2002, 613(1):1276-1283. DOI: 10.1063/1.1472155.
[67] HASTINGS L J, HEDAYAT A, BROWN T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage: NASA/TM-2004-213175[R]. Hanover: NASA Center for AeroSpace Information, 2004: 1-36.
[68] 迟晓婷.低温推进剂储箱多层绝热结构的传热特性研究[D].哈尔滨:哈尔滨工业大学,2019. CHI X T. Study on heat transfer characteristics of multilayer insulation structure of low temperature propellant tank[D]. Harbin: Harbin Institute of Technology, 2019.
[69] 朱浩唯,黄永华,许奕辉,吴静怡,李鹏.变密度多层绝热的理论分析[J]. 低温工程,2011(6):42-46. 10.3969/j.issn. 1000-6516.2011.06.009. ZHU H W, HUANG Y H, XU Y H, WU J Y, LI P. Performance optimization and analysis of variable density multilayer insulation[J]. Cryogenics, 2011(6): 42-46.
[70] 周振君,雷刚,王天祥,李兆坚.变密度多层的Lockheed修正模型分析[J].低温与超导,2015,43(10):27-29,61. 10. 16711/j.1001-7100.2015.10.006. ZHOU Z J, LEI G, WANG T X, LI Z J. Investigation on variable density multilayer insulation based on the modified Lockheed model[J]. Cryogenics and Superconductivity, 2015, 43(10): 27-29, 61.
[71] 冶文莲,王田刚,王小军,王丽红,张安.应用于低温贮箱的变密度多层绝热传热分析[J].低温与超导,2012,40(12):5-8. 10.3969/j.issn.1001-7100.2012.12.002. YE W L, WANG T G, WANG X J, WANG L H, ZHANG A. Heat transfer analysis of variable density multi-layer insulation for cryogenic storage tank[J]. Cryogenics and Superconductivity, 2012, 40(12): 5-8.
[72] 王田刚,李延娜,姚淑婷,陈叔平,王丽红,冶文莲.变密度多层绝热最优层密度研究[J].低温与超导,2014,42(7):6-9,48. 10.16711/j.1001-7100.2014.07.005. WANG T G, LI Y N, YAO S T, CHEN S P, WANG L H, YE W L. Study on optimal layer density of variable density multilayer insulation[J]. Cryogenics and Superconductivity, 2014, 42(7): 6-9, 48.
[73] 王莹,厉彦忠,陈鹏玮,马原,王磊.空间燃料贮箱变密度多层绝热结构传热性能研究[J].低温工程,2016(5):57-63. 10.3969/j.issn.1000-6516.2016.05.011. WANG Y, LI Y Z, CHEN P W, MA Y, WANG L. Study on heat transfer performance of insulation structure in space fuel tank[J]. Cryogenics, 2016(5): 57-63.
[74] ZHENG J P, CHEN L B, WANG J, XI X T, ZHU H L, ZHOU Y, et al. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank[J]. Energy Conversion and Management, 2019, 186: 526-534. DOI:10.1016/j.enconman.2019.02.073.
[75] JIANG W B, SUN P J, LI P, ZUO Z Q, HUANG Y H. Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank[J]. Energy, 2021, 231: 120859. DOI: 10.1016/j.energy.2021.120859.
[76] 黄奕宁,王磊,马原,厉彦忠.多层材料/气冷屏传热二维模型与绝热性能[J/OL].华中科技大学学报(自然科学版):1-7[2024-03-12]. https://link.cnki.net/doi/10.13245/j.hust.240498.HUANG Y N,WANG L,MA Y,LI Y Z. Two-dimensional modeling and thermal insulation performance of multilayer insulation/vapor-cooled shield[J/OL]. Journal of Huazhong University of Science and Technology (Nature Science Edition): 1-7[2024-03-12]. https://link.cnki.net/doi/10.13245/j.hust.240498.
[77] 刘展,厉彦忠,高蓬辉.采用蒸汽冷却屏的低温贮箱传热过程分析[J].工程热物理学报,2019,40(3):629-634. LIU Z, LI Y Z, GAO P H. Heat transfer analysis of cryogenic tank covered with vapor-cooled shield[J]. Journal of Engineering Thermophysics, 2019, 40(3): 629-634.
[78] 赵拓.低温气冷屏复合绝热结构传热研究[D].兰州:兰州理工大学,2016. ZHAO T. The heat transfer study of cryogenic vapor cooled shield compounded insulation[D]. Lanzhou: Lanzhou University of Technology, 2016.
[79] 忻碧平,文键,李科,陈强,王斯民.液氢储罐蒸气冷却屏多层绝热性能分析[J].化学工程,2023,51(10):42-47,52. 10.3969/j.issn.1005-9954.2023.10.008. XIN B P,WEN J,LI K,CHEN Q,WANG S M. Performance analysis of mulyi-layer insulation for vapor-cooled shield of liquid hydrogen storage tanks[J]. Chemical Engineering 2023, 51(10): 42-47, 52.
[80] 安刚,叶莉,刘海生,骆明强,高沛.仲氢转化制冷技术分析研究[J]. 真空与低温,2015,21(3):165-168. 10.3969/j.issn.1006-7086.2015.03.008. AN G,YE L,LIU H S,LUO M Q,GAO P. Analysis research on parahydrogen refrigration technology with conversion[J]. Vacuum and Cryogenics, 2015, 21(3): 165-168.
[81] 李敬法,李建立,王玉生,赵杰,李汉勇,宇波.氢能储运关键技术研究进展及发展趋势探讨[J].油气储运,2023,42(8):856-871. 10.6047/j.issn.1000-8241.2023.08.002. LI J F,LI J L,WANG Y S,ZHAO J,LI H Y,YU B. Research progress and development trends of key technologies for hydrogen energy storage and transportation[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 856-871.
[82] 王鑫,陈叔平,朱鸣.液氢储运技术发展现状与展望[J].太阳能学报,2024,45(1):500-514. 10.19912/j.0254-0096. tynxb.2022-1559. WANG X,CHEN S P,ZHU M. Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta Energiae Solaris Sinica, 2024, 45(1):500-514.
[83] 史陈芳达,吕蓉蓉,李春煜,史文军,朱子龙,刘涛,等.液氢海上运输关键技术发展[J].船电技术,2024,44(1):1-5. 10.13632/j.meee.2024.01.009. SHI C F D,LV R R,LI C Y,SHI W J,ZHU Z L,LIU T, et al. Development of key technologies for the maritime transportation of iquid hydrogen[J]. Marine Electric & Electronic Technology 2024, 44(1): 1-5.
[84] 妙丛,黄磊,张震.减少液氢容器漏热的关键技术分析[J].中国设备工程,2022(7):210-212. 10.3969/j.issn.1671-0711. 2022.07.116. MIAO C,HUANG L,ZHANG Z. Analysis of key technologies for reducing heat leakage in liquid hydrogen containers[J]. China Plant Engineering, 2022(7): 210-212.
[85] 陈烨,郭梁,杨少柒,谢秀娟,吴畏,龚领会.液氢零蒸发储存系统研究现状与展望[J].真空与低温,2023,29(5):447-458. 10.3969/j.issn.1006-7086.2023.05.003. CHEN Y,GUO L,YANG S Q,YANG X J,WU W,GONG L H. Development and prospect of liquid hydrogen zero boil-off storage system[J]. Vacuum and Cryogenics, 2023, 29(5):447-458.

相似文献/References:

[1]牛帅帅 赵杰 李敬法 吴小华 宇波 李建立.液氢低温输运管道环空绝热技术研究进展[J].油气储运,2024,43(06):1.
 Niu Shuaishuai,Zhao Jie,Wu Xiaohua,et al.Research progress of liquid hydrogen cryogenic transportation pipeline circumferential air insulation technology[J].Oil & Gas Storage and Transportation,2024,43(04):1.

备注/Memo

牛帅帅,男,1998年生,在读硕士生,2022年毕业于晋中学院网络工程专业,现主要从事过程装备强化与数字化仿真技术方向的研究工作。地址:北京市大兴区清源北路19号,102617。电话:18635624667。Email:1032026627@qq.com
通信作者:赵杰,女,1976年生,教授,2002年硕士毕业于辽宁石油化工大学化工过程与机械专业,现主要从事过程装备强化与数字化仿真技术方向的研究工作。地址:北京市大兴区清源北路19号,102617。电话:13691133997。Email:zhaojie@bipt.edu.cn
基金项目:国家重点研发计划资助项目“液氢转注、输运和长期高密度存储技术”,2022YFB4002900。
· Received: 2023-07-22 · Revised: 2023-09-04 · Online: 2024-03-15

更新日期/Last Update: 2024-04-25