[1]颜珂,彭星煜,刘小琨,等.基于CEEMD-LSTM的短期天然气负荷预测模型[J].油气储运,2024,43(03):351-359.[doi:10.6047/j.issn.1000-8241.2024.03.012]
 YAN Ke,PENG Xingyu,LIU Xiaokun,et al.Short-term natural gas load forecasting model based on CEEMD-LSTM[J].Oil & Gas Storage and Transportation,2024,43(03):351-359.[doi:10.6047/j.issn.1000-8241.2024.03.012]
点击复制

基于CEEMD-LSTM的短期天然气负荷预测模型

参考文献/References:

[1] 王宝财.基于温度近因效应的多元线性回归电力负荷预测[J].水电能源科学,2018,36(10):201-205. WANG B C. Load forecasting of multiple linear regression based on temperature recency effect[J]. Water Resources and Power, 2018, 36(10): 201-205.
[2] 宋建,束洪春,董俊,梁雨婷,李雨龙,杨博.基于GM(1,1)与BP神经网络的综合负荷预测[J].电力建设,2020,41(5):75-80. 10.12204/j.issn.1000-7229.2020.05.009. SONG J, SHU H C, DONG J, LIANG Y T, LI Y L, YANG B. Comprehensive load forecast based on GM(1,1) and BP neural network[J]. Electric Power Construction, 2020, 41(5): 75-80.
[3] 孙玉芹,王亚文,朱威,李彦.基于考虑气温影响的门限自回归移动平均模型居民日用电负荷预测[J].电力建设,2022,43(9):117-124. 10.12204/j.issn.1000-7229.2022.09.012. SUN Y Q, WANG Y W, ZHU W, LI Y. Residential daily power load forecasting based on threshold ARMA model considering the influence of temperature[J]. Electric Power Construction, 2022, 43(9): 117-124.
[4] 冯忠义,王咏欣,袁博,冯秀丽,姚志安,吴志刚.基于随机森林和改进局部预测的短期电力负荷预测[J].水利水电技术(中英文),2021,52(增刊2):300-305. 10.13928/j.cnki.wrahe.2021. S2.067. FENG Z Y, WANG Y X, YUAN B, FENG X L, YAO Z A, WU Z G. Short term load forecasting method based on random forests and improved local predictor[J]. Water Resources and Hydropower Engineering, 2021, 52(S2): 300-305.
[5] 刘涵,刘丁,郑岗,梁炎明,宋念龙.基于最小二乘支持向量机的天然气负荷预测[J].化工学报,2004,55(5):828-832. 10.3321/j.issn:0438-1157.2004.05.018. LIU H, LIU D, ZHENG G, LIANG Y M, SONG N L. Natural gas load forecasting based on least squares support vector machine[J]. CIESC Journal, 2004, 55(5): 828-832.
[6] 李龙,魏靖,黎灿兵,曹一家,宋军英,方八零.基于人工神经网络的负荷模型预测[J].电工技术学报,2015,30(8):225-230. 10.3969/j.issn.1000-6753.2015.08.028. LI L, WEI J, LI C B, CAO Y J, SONG J Y, FANG B L. Prediction of load model based on artificial neural network[J].Transactions of China Electrotechnical Society, 2015, 30(8):225-230.
[7] 田文才,乔伟彪,周国峰,刘伟.基于小波变换和深度学习的短期天然气负荷预测研究[J].辽宁石油化工大学学报,2021, 41(5):91-96. 10.3969/j.issn.1672-6952.2021.05.016. TIAN W C, QIAO W B, ZHOU G F, LIU W. Research on short-term natural gas load forecasting based on wavelet transform and deep learning[J]. Journal of Liaoning University of Petroleum &Chemical Technology, 2021, 41(5): 91-96.
[8] 张少平,徐晓钟,代军委.基于自适应变异粒子群算法和BP神经网络的短期燃气负荷预测[J].计算机应用,2016,36(增刊1):103-105,153. ZHANG S P, XU X Z, DAI J W. Short-term gas load forecasting based on adaptive mutation particle swarm optimization and BP neural network[J]. Journal of Computer Applications, 2016, 36(S1): 103-105, 153.
[9] 张佼,田琦,王美萍.基于遗传算法优化支持向量回归机参数的供热负荷预测[J].暖通空调,2017,47(2):104-108. ZHANG J, TIAN Q, WANG M P. Heating load prediction based on support vector regression machine with parameters optimized by genetic algorithm[J]. Heating Ventilating & Air Conditioning, 2017, 47(2): 104-108.
[10] 田书欣,周全,程浩忠,柳璐,路亮,江栗.基于鸽群优化算法的支持向量机在电力需求总量预测中的应用[J].电力自动化设备,2020,40(5):173-179. 10.16081/j.epae. 202004016. TIAN S X, ZHOU Q, CHENG H Z, LIU L, LU L, JIANG L. Application of pigeon-inspired optimization algorithm based SVM in total power demand forecasting[J]. Electric Power Automation Equipment, 2020, 40(5): 173-179.
[11] 刘辉,李侯君,刘雨薇,邹琪骁.基于VMD和GWO-SVR的电力负荷预测方法[J].现代电子技术,2020,43(23):167-172. 10.16652/j.issn.1004-373x.2020.23.038. LIU H, LI H J, LIU Y W, ZOU Q X. Power load forecasting method based on VMD and GWO-SVR[J]. Modern Electronics Technique, 2020, 43(23): 167-172.
[12] 肖荣鸽,刘博,王勤学,林海威.基于GRA-ABC-BPNN模型的城市燃气日负荷预测[J].油气储运,2022,41(8):987-994. 10.6047/j.issn.1000-8241.2022.08.015. XIAO R G, LIU B, WANG Q X, LIN H W. Daily load forecasting of urban gas based on GRA-ABC-BPNN model[J].Oil & Gas Storage and Transportation, 2022, 41(8):987-994.
[13] 庄世杰,於志勇,郭文忠,黄昉菀.基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用[J].计算机科学, 2020,47(9):105-109. 10.11896/jsjkx.190800030. ZHUANG S J, YU Z Y, GUO W Z, HUANG F W. Short term load forecasting via Zoneout-based multi-time scale recurrent neural network[J]. Computer Science, 2020, 47(9): 105-109.
[14] 李鑫,李海明,马健.基于单步预测LSTM的短期负荷预测模型[J].计算机仿真,2022,39(6):98-102,117. 10.3969/j.issn. 1006-9348.2022.06.019. LI X, LI H M, MA J. Short-term load forecasting model based on LSTM of single-step forecasting[J]. Computer Simulation, 2022, 39(6): 98-102, 117.
[15] 那幸仪,贾俊铖,赵晓筠,张莉,李凡长.基于小波变换和LSTM模型的城市天然气负荷预测[J].计算机应用与软件,2021,38(12):61-66. 10.3969/j.issn.1000-386x.2021. 12.011. NA X Y, JIA J C, ZHAO X J, ZHANG L, LI F C. City natural gas load forecasting based on wavelet transform and LSTM model[J]. Computer Applications and Software, 2021, 38(12):61-66.
[16] 王荣茂,谢宁,于海洋,禹加,蒋蕾,杨宏宇.基于EMD-LSTM模型的台区负荷短期预测方法[J].实验室研究与探索,2022, 41(1):62-66,79. 10.19927/j.cnki.syyt.2022.01.013. WANG R M, XIE N, YU H Y, YU J, JIANG L, YANG H Y. Short-term load forecasting method based on EMD-LSTM model[J]. Research and Exploration in Laboratory, 2022, 41(1):62-66, 79.
[17] 邓带雨,李坚,张真源,滕予非,黄琦.基于EEMD-GRU-MLR的短期电力负荷预测[J].电网技术,2020,44(2):593-602. 10.13335/j.1000-3673.pst.2019.0113. DENG D Y, LI J, ZHANG Z Y, TENG Y F, HUANG Q. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2): 593-602.
[18] HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 417-457. DOI: 10.1146/annurev. fluid.31.1.417.
[19] 刘恒勇,刘永礼,邓世聪,史帅彬,闵若琳,周东国.一种基于LSTM模型的电力负荷辨识方法[J].电测与仪表,2019, 56(23):62-69. 10.19753/j.issn1001-1390.2019.023. 010. LIU H Y, LIU Y L, DENG S C, SHI S B, MIN R L, ZHOU D G. A power load identification method based on LSTM model[J]. Electrical Measurement & Instrumentation, 2019, 56(23): 62-69.
[20] 张其霄,董鹏,王科文,卢苇.基于贝叶斯优化LSTM的发动机剩余寿命预测[J].火力与指挥控制,2022,47(4):85-89. 10.3969/j.issn.1002-0640.2022.04.015. ZHANG Q X, DONG P, WANG K W, LU W. Residual service life prediction for aircraft engines based on Bayesian optimal long short-term memory network[J]. Fire Control & Command Control, 2022, 47(4): 85-89.

相似文献/References:

[1]田文才,傅宗化,周国峰,等.基于WT+改进SSA-LSTM模型的短期天然气负荷预测算法[J].油气储运,2023,42(02):231.[doi:10.6047/j.issn.1000-8241.2023.02.013]
 TIAN Wencai,FU Zonghua,ZHOU Guofeng,et al.Short-term natural gas load forecast algorithm based on WT+ improved SSA-LSTM model[J].Oil & Gas Storage and Transportation,2023,42(03):231.[doi:10.6047/j.issn.1000-8241.2023.02.013]
[2]颜珂  彭星煜 刘小琨  张昆 张瑜春 穆卫巍 李富生.基于CEEMD-LSTM的短期天然气负荷预测[J].油气储运,2024,43(03):1.
 YAN Ke,PENG Xingyu,LIU Xiaokun,et al.Short term natural gas load prediction based on CEEMD-LSTM[J].Oil & Gas Storage and Transportation,2024,43(03):1.

备注/Memo

颜珂,男,1998年生,在读硕士生,2021年毕业于西南石油大学油气储运工程专业,现主要从事油气储运输送安全方向的研究工作。地址:四川省成都市新都区新都大道8号,610500。电话:17341959786。Email:921507214@qq.com
通信作者:彭星煜,男,1982年生,副教授,2010年博士毕业于西南石油大学油气储运工程专业,现主要从事油气集输系统节能降耗、油气流动安全保障技术与完整性管理相关技术研究工作。地址:四川省成都市新都区新都大道8号,610500。电话:13982282676。Email:pengxy1949@163.com
· Received: 2023-07-11 · Revised: 2023-09-05 · Online: 2023-12-27

更新日期/Last Update: 2024-03-25