[1]吴迪,李祎璇,崔淦.不同泄放条件下高压氢气泄漏激波传播行为及诱导自燃特性[J].油气储运,2024,43(03):296-307.[doi:10.6047/j.issn.1000-8241.2024.03.006]
 WU Di,LI Yixuan,CUI Gan.Study on shock wave propagation behavior and induced spontaneous combustion characteristics in high-pressure hydrogen leakage under varying discharge conditions[J].Oil & Gas Storage and Transportation,2024,43(03):296-307.[doi:10.6047/j.issn.1000-8241.2024.03.006]
点击复制

不同泄放条件下高压氢气泄漏激波传播行为及诱导自燃特性

参考文献/References:

[1] 李敬法,李建立,王玉生,赵杰,李汉勇,宇波.氢能储运关键技术研究进展及发展趋势探讨[J].油气储运,2023,42(8):856-871. 10.6047/j.issn.1000-8241.2023.08.002. LI J F, LI J L, WANG Y S, ZHAO J, LI H Y, YU B. Research progress and development trends of key technologies for hydrogen energy storage and transportation[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 856-871.
[2] 刘翠伟,裴业斌,韩辉,周慧,张睿,李玉星,等.氢能产业链及储运技术研究现状与发展趋势[J].油气储运,2022,41(5):498-514. 10.6047/j.issn.1000-8241.2022.05.002. LIU C W, PEI Y B, HAN H, ZHOU H, ZHANG R, LI Y X, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498-514.
[3] 谢萍,伍奕,李长俊,贾文龙,张皓,吴瑕.混氢天然气管道输送技术研究进展[J].油气储运,2021,40(4):361-370. 10.6047/j.issn.1000-8241.2021.04.001. XIE P, WU Y, LI C J, JIA W L, ZHANG H, WU X. Research progress on pipeline transportation technology of hydrogen-mixed natural gas[J]. Oil & Gas Storage and Transportation, 2021, 40(4): 361-370.
[4] XIAO H H, DUAN Q L, SUN J H. Premixed flame propagation in hydrogen explosions[J]. Renewable and Sustainable Energy Reviews,2018, 81(Part 2): 1988-2001. DOI: 10.1016/j.rser.2017. 06.008.
[5] 靳开颜.管道内高压氢气泄漏自燃孕育微观动力学及预测模型研究[D].成都:西南交通大学,2022. JIN K Y. Investigation on the microdynamic and prediction model of spontaneous ignition during high-pressure hydrogen release inside a tube[D]. Chengdu: Southwest Petroleum University, 2022.
[6] L?KKE J A. The Kj?rbo incident[EB/OL]. (2019-06-28)[2023-08-27]. https://www.sintef.no/globalassets/sintef-industri/arrangement/sh2ift/learnings-from-the-kjorbo-incident-nel.pdf/.
[7] 弓亮.管道内高压氢气泄漏自燃机理实验与数值模拟研究[D].合肥:中国科学技术大学,2019. GONG L. Experimental and numerical study on the mechanism of spontaneous ignition during high-pressure hydrogen release into a tube[D]. Hefei: University of Science and Technology of China, 2019.
[8] DRYER F L, CHAOS M, ZHAO Z W, STEIN J N, ALPERT J Y, HOMER C J. Spontaneous ignition of pressurized releases of hydrogen and natural gas into air[J]. Combustion Science and Technology, 2007, 179(4): 663-694. DOI:10.1080/00102200600713583.
[9] 李萍.管道几何结构对高压氢气泄漏自燃影响机理实验研究[D].合肥:中国科学技术大学,2019. LI P. Experimental study on effect of pipe geometry on impact mechanism for spontaneous ignition of high-pressure hydrogen release[D]. Hefei: University of Science and Technology of China, 2019.
[10] 倪鹏飞.密闭空间内甲烷-氢气-空气混合气体燃爆特性的实验与数值模拟研究[D].常州:常州大学,2021. NI P F. Experimental and numerical simulation study on the combustion and explosion characteristics of methane-hydrogen-air mixed gas in confined space[D]. Changzhou: Changzhou University, 2021.
[11] LUO C, ZANGANEH J, MOGHTADERI B. A 3D numerical study of detonation wave propagation in various angled bending tubes[J]. Fire Safety Journal, 2016, 86: 53-64. DOI: 10.1016/j.firesaf.2016.10.002.
[12] ZENG Q, DUAN Q L, JIN K Q, ZHU M Y, SUN J H. Effects of nitrogen addition on the shock-induced ignition of high-pressure hydrogen release through a rectangular tube of 400 mm in length[J]. Fuel, 2022, 308: 122016. DOI: 10.1016/j.fuel.2021.122016.
[13] ZENG Q, DUAN Q L, LI P, ZHU H Y, SUN D X, SUN J H. An experimental study of the effect of 2.5% methane addition on self-ignition and flame propagation during high-pressure hydrogen release through a tube[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3381-3390. DOI: 10.1016/j.ijhydene.2019.11.155.
[14] ZENG Q, DUAN Q L, SUN D X, LI P, ZHU M Y, WANG Q S, et al. Experimental study of methane addition effect on shock wave propagation, self-ignition and flame development during high-pressure hydrogen sudden discharge from a tube[J]. Fuel, 2020, 277: 118217. DOI: 10.1016/j.fuel.2020.118217.
[15] ZENG Q, JIN K Q, DUAN Q L, ZHU M Y, GONG L, WANG Q S, et al. Effects of CO addition on shock wave propagation, self-ignition, and flame development of high-pressure hydrogen release into air[J]. International Journal of Hydrogen Energy, 2022, 47(32): 14714-14724. DOI: 10.1016/j.ijhydene.2022.02.192.
[16] GONG L, DUAN Q L, LIU J L, LI M, JIN K Q, SUN J H. Effect of burst disk parameters on the release of high-pressure hydrogen[J]. Fuel, 2019, 235: 485-494. DOI: 10.1016/j.fuel.2018.08.044.
[17] CHA S W, ROH T S, LEE H J. Effect of opening area on the suppression of self-ignition of high-pressure hydrogen gas leaking in the air by an extension tube[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5904-5915. DOI: 10.1016/j.ijhydene.2020.11.132.
[18] IVANOV M F, KIVERIN A D, SMYGALINA A E, GOLUB V V, GOLOVASTOV S V. Mechanism of self-ignition of pressurized hydrogen flowing into the channel through rupturing diaphragm[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11902-11910. DOI: 10.1016/j.ijhydene.2017.02.032.
[19] RUDY W, TEODORCZYK A, WEN J. Self-ignition of hydrogen-nitrogen mixtures during high-pressure release into air[J]. International Journal of Hydrogen Energy, 2017, 42(11):7340-7352. DOI: 10.1016/j.ijhydene.2016.06.051.
[20] KANEKO W, ISHII K. Effects of diaphragm rupturing conditions on self-ignition of high-pressure hydrogen[J]. International Journal of Hydrogen Energy, 2016, 41(25):10969-10975. DOI: 10.1016/j.ijhydene.2016.04.211.
[21] BRAGIN M V, MAKAROV D V, MOLKOV V V. Pressure limit of hydrogen spontaneous ignition in a T-shaped channel[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8039-8052. DOI: 10.1016/j.ijhydene.2013.03.030.
[22] GONG L, JIN K Y, YANG S N, YANG Z Y, LI Z S, GAO Y J, et al. Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen in the L-shaped tube[J]. International Journal of Hydrogen Energy, 2020, 45(56):32730-32742. DOI: 10.1016/j.ijhydene.2020.08.267.
[23] GONG L, DUAN Q L, SUN Q, JIN K Q, SUN J H. Effects of the geometry of downstream pipes with different angles on the shock ignition of high-pressure hydrogen during its sudden expansion[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8382-8391. DOI: 10.1016/j.ijhydene.2017.02.025.
[24] DUAN Q L, XIAO H H, GAO W, GONG L, SUN J H. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section[J]. Journal of Hazardous Materials, 2016, 320: 18-26. DOI: 10.1016/j.jhazmat.2016.08.005.
[25] ASAHARA M, SABURI T, KUBOTA S, KUBOTA T, ANDO T, MIYASAKA T. Self-ignition and flame development of high-pressure hydrogen flow in a rectangular tube by simultaneous shadowgraph and direct photograph[C]. Osaka:31st International Congress on High-Speed Imaging and Photonics, 2017: 1032814.
[26] 李西贵,滕霖,李卫东,黄鑫.管内障碍物位置对高压氢气泄漏自燃影响的数值模拟[J].油气储运,2021,40(11):1306-1313. 10.6047/j.issn.1000-8241.2021.11.015. LI X G, TENG L, LI W D, HUANG X. Numerical simulation of the effect of obstacle locations inside pipelines on spontaneous ignition resulted from high-pressure hydrogen leakage[J]. Oil &Gas Storage and Transportation, 2021, 40(11): 1306-1313.
[27] LEE H J, LEE S Y, PARK J H, JEUNG I S. Effects of opening conditions on the self-ignition of high pressurized hydrogen released through a tube[C]. Leeds: Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2015: 1-6.
[28] MOGI T, KIM D, SHIINA H, HORIGUCHI S. Self-ignition and explosion during discharge of high-pressure hydrogen[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 199-204. DOI: 10.1016/j.jlp.2007.06.008.
[29] DUAN Q L, XIAO H H, GONG L, JIN K Q, GAO W, CHAI H, et al. Experimental study on spontaneous ignition and subsequent flame development caused by high-pressure hydrogen release: coupled effects of tube dimensions and burst pressure[J]. Fire Safety Journal, 2018, 97: 44-53. DOI: 10.1016/j.firesaf.2018.03.001.
[30] ASAHARA M, SABURI T, ANDO T, TAKAHASHI Y, MIYASAKA T, KUBOTA S. Self-ignited flame behavior of high-pressure hydrogen release by rupture disk through a long tube[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13484-13500. DOI: 10.1016/j.ijhydene.2021.01.097.
[31] XU X D, JIANG J, JIANG Y M, WANG Z L, WANG Q Y, YAN W Y, et al. Spontaneous ignition of high-pressure hydrogen and boundary layer characteristics in tubes[J]. International Journal of Hydrogen Energy, 2020, 45(39):20515-20524. DOI: 10.1016/j.ijhydene.2020.02.060.
[32] ZHANG T, JIANG Y M, PAN X H, WANG Z L, WANG Q Y, LI Y Y, et al. Effects of tubes with different inlet shapes on the shock wave and self-ignition induced by accidental release of pressurized hydrogen[J]. Fuel, 2022, 317: 123554. DOI:10.1016/j.fuel.2022.123554.
[33] ASAHARA M, YOKOYAMA A, TSUBOI N, HAYASHI A K. Influence of tube cross-section geometry on high-pressure hydrogen-flow-induced self-ignition[J]. International Journal of Hydrogen Energy, 2023, 48(21): 7909-7926. DOI: 10.1016/j.ijhydene.2022.08.210.
[34] GONG L, DUAN Q L, JIANG L, JIN K Q, SUN J H. Experimental study on flow characteristics and spontaneous ignition produced by pressurized hydrogen release through an Omega-shaped tube into atmosphere[J]. Fuel, 2016, 184: 770-779. DOI: 10.1016/j.fuel.2016.07.078.
[35] JIANG Y M, PAN X H, HUA M, WANG Z L, ZHANG T, WANG Q Y, et al. Effect of flow directions in the T-shaped tubes on the shock wave and spontaneous ignition of pressurized hydrogen[J]. Fuel, 2023, 332(Part 1): 126054. DOI: 10.1016/j.fuel.2022.126054.
[36] GONG L, ZHENG X W, YANG S N, YAO Y Z, XIE Y L, MO T Y, et al. Numerical study on the shock evolution and the spontaneous ignition of high-pressure hydrogen during its sudden release into the tubes with different angles[J]. Fuel, 2023, 331(Part 2): 125940. DOI: 10.1016/j.fuel.2022.125940.
[37] DUAN Q L, XIAO H H, GAO W, GONG L, WANG Q S,SUN J H. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air[J]. Fuel, 2016, 181: 811-819. DOI: 10.1016/j.fuel.2016.05.066.
[38] LIEPMANN H W, ROSHKO A. Elements of gasdynamics[M]. New York: Wiley, 1957.
[39] 朱梦园.高压氢气泄漏自燃动力学特性的数值模拟研究[D].合肥:中国科学技术大学,2022. ZHU M Y. Numerical study on dynamic characteristics of the spontaneous ignition during high-pressure hydrogen release[D]. Hefei: University of Science and Technology of China, 2022.
[40] KINZEL M P, LINDAU J W, KUNZ R F. Free-surface proximity effects in developed and super-cavitation[C]. Seattle:2008 DoD HPCMP Users Group Conference, 2008: 25-34.
[41] 乔春戈.基于大涡模拟的梯形太阳池二维数值研究[D].大连:大连理工大学,2019. QIAO C G. Two-dimensional numerical simulation of trapezoidal solar pond based on large eddy model[D]. Dalian:Dalian University of Technology, 2019.
[42] BRAGIN M V, MOLKOV V V. Physics of spontaneous ignition of high-pressure hydrogen release and transition to jet fire[J]. International Journal of Hydrogen Energy, 2011, 36(3):2589-2596. DOI: 10.1016/j.ijhydene.2010.04.128.

相似文献/References:

[1]彭忍社 尹旭东 李庞. 输气管道法兰泄漏在线治理技术方案[J].油气储运,2012,31(12):917.[doi:10.6047/j.issn.1000-8241.2012.12.011]
 Peng Renshe,Yin Xudong,Li Pang.Technical approach to on-line control of flange leakage of gas pipelines[J].Oil & Gas Storage and Transportation,2012,31(03):917.[doi:10.6047/j.issn.1000-8241.2012.12.011]
[2]陈健峰,税碧垣,沈煜欣,等.储罐与工艺管道的完整性管理[J].油气储运,2011,30(04):259.[doi:10.6047/j.issn.1000-8241.2011.04.005]
 Chen Jianfeng,Shui Biyuan,Shen Yuxin,et al.Integrity management of storage tank and process pipeline[J].Oil & Gas Storage and Transportation,2011,30(03):259.[doi:10.6047/j.issn.1000-8241.2011.04.005]
[3]项小强,戴联双,曹涛,等.输油管道泄漏液池的蒸气云扩散模型[J].油气储运,2011,30(05):334.[doi:10.6047/j.issn.1000-8241.2011.05.003]
 Xiang Xiaoqiang,Dai Lianshuang,Cao Tao,et al.Vapor cloud dispersion model for leakage pool of oil pipeline[J].Oil & Gas Storage and Transportation,2011,30(03):334.[doi:10.6047/j.issn.1000-8241.2011.05.003]
[4]桑博,兰惠清,余学立,等.燃气管道泄漏过程模型的研究进展[J].油气储运,2011,30(08):608.[doi:10.6047/j.issn.1000-8241.2011.08.003]
 Sang Bo,Lan Huiqing,Yu Xueli,et al.The research progress of gas pipeline leak model[J].Oil & Gas Storage and Transportation,2011,30(03):608.[doi:10.6047/j.issn.1000-8241.2011.08.003]
[5]赵祥迪,袁纪武,翟良云,等.基于CFD 的液态烃罐区泄漏爆炸事故后果模拟[J].油气储运,2011,30(08):634.[doi:10.6047/j.issn.1000-8241.2011.08.009]
 Zhao Xiangdi,Yuan Jiwu,Zhai Liangyun,et al.Leakage explosion consequence simulation based on CFD for liquid hydrocarbon tankfarms[J].Oil & Gas Storage and Transportation,2011,30(03):634.[doi:10.6047/j.issn.1000-8241.2011.08.009]
[6]李朝阳,马贵阳,刘亮.埋地输油管道泄漏油品扩散模拟[J].油气储运,2011,30(09):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
 Li Zhaoyang,Ma Guiyang,Liu Liang,et al.Diffusion simulation on leaked oil for buried pipelines[J].Oil & Gas Storage and Transportation,2011,30(03):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
[7]支焕,蒋华义,高志亮,等.卫星监测技术在输油管道泄漏中的应用[J].油气储运,2011,30(12):957.[doi:10.6047/j.issn.1000-8241.2011.12.021]
 Zhi Huan,Jiang Huayi,Gao Zhiliang,et al.Satellite monitoring technology for leakage detection of oil pipeline[J].Oil & Gas Storage and Transportation,2011,30(03):957.[doi:10.6047/j.issn.1000-8241.2011.12.021]
[8]周宁 潘东 冷明 赵会军 刘晅亚.油库罐区危险化学品的泄漏扩散实验[J].油气储运,2012,31(4):263.[doi:10.6047/j.issn.1000-8241.2012.04.006]
 Zhou Ning,Pan Dong,Leng Ming,et al.Leakage and diffusion experiment of hazardous materials in oil tankfarm[J].Oil & Gas Storage and Transportation,2012,31(03):263.[doi:10.6047/j.issn.1000-8241.2012.04.006]
[9]杜曼 赵东风 孟亦飞.长输天然气管道泄漏事故后果评价方法与应用[J].油气储运,2012,31(5):340.[doi:10.6047/j.issn.1000-8241.2012.05.005]
 Du Man,Zhao Dongfeng,Meng Yifei.Evaluation method of leakage consequence for long-distance gas pipeline and its application[J].Oil & Gas Storage and Transportation,2012,31(03):340.[doi:10.6047/j.issn.1000-8241.2012.05.005]
[10]张静,樊建春,温东,等.基于故障树的油气管道泄漏模糊可靠性评估[J].油气储运,2010,29(6):401.[doi:10.6047/j.issn.1000-8241.2010.06.001]
 Zhang Jing,Fan Jianchun,Wen Dong.Fuzzy Reliability Evaluation on Oil and Gas Pipeline Leakage Based on Fault Tree[J].Oil & Gas Storage and Transportation,2010,29(03):401.[doi:10.6047/j.issn.1000-8241.2010.06.001]
[11]李西贵,滕霖,李卫东,等.管内障碍物位置对高压氢气泄漏自燃影响的数值模拟[J].油气储运,2021,40(11):1306.[doi:10.6047/j.issn.1000-8241.2021.11.015]
 LI Xigui,TENG Lin,LI Weidong,et al.Numerical simulation of the effect of obstacle locations inside pipelines on spontaneous ignition resulted from high-pressure hydrogen leakage[J].Oil & Gas Storage and Transportation,2021,40(03):1306.[doi:10.6047/j.issn.1000-8241.2021.11.015]
[12]吴迪 李祎璇 崔淦.不同泄放条件下高压氢气泄漏激波传播行为及诱导自燃特性[J].油气储运,2024,43(03):1.
 WU Di,LI Yi-Xuan,CUI Gan.Study on the shock wave propagation behavior and spontaneous combustion characteristics of high-pressure hydrogen leakage under different discharge conditions[J].Oil & Gas Storage and Transportation,2024,43(03):1.

备注/Memo

吴迪,男,1998年生,在读硕士生,2021年毕业于中国石油大学(华东)油气储运工程专业,现主要从事高压氢气泄漏自燃机理及火焰传播等方面的研究工作。地址:山东省青岛市黄岛区长江西路66号,266580。电话:13105180508。Email:825943335@qq.com
通信作者:崔淦,男,1989年生,教授,2016年博士毕业于中国石油大学(华东)油气储运工程专业,现主要从事腐蚀与防护,燃烧及风险评估、新能源储存与运输等方面的研究工作。地址:山东省青岛市黄岛区长江西路66号,266580。电话:18954831115。Email:chennacuigan@163.com
基金项目:山东省自然科学基金资助项目“高压氢气泄漏激波诱导自燃机理及火焰传播特性研究”,ZR2023ME088。
· Received: 2023-09-09 · Revised: 2023-10-17 · Online: 2023-12-21

更新日期/Last Update: 2024-03-25