[1]廖艺涵,王艺,郑度奎,等.金属氢化物储氢反应器的热管理研究进展[J].油气储运,2024,43(03):257-271.[doi:10.6047/j.issn.1000-8241.2024.03.002]
 LIAO Yihan,WANG Yi,ZHENG Dukui,et al.A review on research progress in thermal management of metal hydride hydrogen storage reactors[J].Oil & Gas Storage and Transportation,2024,43(03):257-271.[doi:10.6047/j.issn.1000-8241.2024.03.002]
点击复制

金属氢化物储氢反应器的热管理研究进展

参考文献/References:

[1] 李政,张东杰,潘玲颖,李天枭,高俊伟. “双碳”目标下我国能源低碳转型路径及建议[J].动力工程学报,2021,41(11):905-909, 971. 10.19805/j.cnki.jcspe.2021.11.001. LI Z, ZHANG D J, PAN L Y, LI T X, GAO J W. Low-carbon transition of China’s energy sector and suggestions with the‘carbon-peak and carbon-neutrality’target[J]. Journal of Chinese Society of Power Engineering, 2021, 41(11): 905-909, 971.
[2] 郑津洋,马凯,叶盛,顾超华,花争立,彭文珠.我国氢能高压储运设备发展现状及挑战[J].压力容器,2022,39(3):1-8. 10.3969/j.issn.1001-4837.2022.03.001. ZHENG J Y, MA K, YE S, GU C H, HUA Z L, PENG W Z. Development status and challenges of equipment for storage and transportation of high-pressure gaseous hydrogen in China[J]. Pressure Vessel Technology, 2022, 39(3): 1-8.
[3] 刘木子,史柯柯,赵强,李晋平,刘光.固体储氢材料的研究进展[J].化工进展,2023,42(9):4746-4769. 10.16085/j.issn. 1000-6613.2022-1906. LIU M Z, SHI K K, ZHAO Q, LI J P, LIU G. Research progress of solid hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769.
[4] 李敬法,李建立,王玉生,赵杰,李汉勇,宇波.氢能储运关键技术研究进展及发展趋势探讨[J].油气储运,2023,42(8):856-871. 10.6047/j.issn.1000-8241.2023.08.002. LI J F, LI J L, WANG Y S, ZHAO J, LI H Y, YU B. Research progress and development trends of key technologies for hydrogen energy storage and transportation[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 856-871.
[5] 邹才能,李建明,张茜,金旭,熊波,余晖迪,等.氢能工业现状、技术进展、挑战及前景[J].天然气工业,2022,42(4):1-20. 10.3787/j.issn.1000-0976.2022.04.001. ZOU C N, LI J M, ZHANG X, JIN X, XIONG B, YU H D, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20.
[6] 丁镠,唐涛,王耀萱,康宁,许鑫.氢储运技术研究进展与发展趋势[J].天然气化工(C1化学与化工),2022,47(2):35-40. 10.3969/j.issn.1001-9219.2022.02.005. DING L, TANG T, WANG Y X, KANG N, XU X. Research progress and development trend of hydrogen storage and transportation technology[J]. Natural Gas Chemical Industry, 2022, 47(2): 35-40.
[7] 曹军文,覃祥富,耿嘎,张文强,于波.氢气储运技术的发展现状与展望[J].石油学报(石油加工),2021,37(6):1461-1478. 10.3969/j.issn.1001-8719.2021.06.026. CAO J W, QIN X F, GENG G, ZHANG W Q, YU B. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1461-1478.
[8] AFZAL M, MANE R, SHARMA P. Heat transfer techniques in metal hydride hydrogen storage: a review[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30661-30682.DOI: 10.1016/j.ijhydene.2017.10.166.
[9] BAI X S, YANG W W, TANG X Y, YANG F S, JIAO Y H, YANG Y. Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels[J]. Energy, 2021, 232: 121101. DOI: 10.1016/j.energy.2021.121101.
[10] MUTHUKUMAR P, KUMAR A, RAJU N N, MALLESWARARAO K, RAHMAN M M. A critical review on design aspects and developmental status of metal hydride based thermal machines[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17753-17779. DOI: 10.1016/j.ijhydene.2018.07.157.
[11] SHAFIEE S, MCCAY M H. Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems-A review[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9462-9470. DOI: 10.1016/j.ijhydene.2016.03.133.
[12] 王亚雄,钟顺彬,孙逢春.车载高质量密度固态储氢材料研究进展[J].稀有金属,2022,46(6):796-812. 10.13373/j.cnki. cjrm.XY21120007. WANG Y X, ZHONG S B, SUN F C. Research progress in vehicular high mass density solid hydrogen storage materials[J]. Chinese Journal of Rare Metals, 2022, 46(6): 796-812.
[13] BERLOUIS L E A, CABRERA E, HALL-BARIENTOS E, HALL P J, DODD S, MORRIS S, et al. A thermal analysis investigation of the hydriding properties of nanocrystalline Mg–Ni based alloys prepared by high energy ball milling[J]. Journal of Alloys and Compounds, 2000, 305(1/2): 82-89. DOI: 10.1016/S0925-8388(00)00711-8.
[14] BERUBE V, CHEN G, DRESSELHAUS M S. Impact of nanostructuring on the enthalpy of formation of metal hydrides[J]. International Journal of Hydrogen Energy, 2008, 33(15): 4122-4131. DOI: 10.1016/j.ijhydene.2008.05.083.
[15] 王栋彬.镁基合金的储氢性能及其机理研究[D].秦皇岛:燕山大学,2018. WANG D B. Hydrogen storage performance and mechanisms study of magnesium based alloy[D]. Qinhuangdao: Yanshan University, 2018.
[16] BAO Z W. Performance investigation and optimization of metal hydride reactors for high temperature thermochemical heat storage[J]. International Journal of Hydrogen Energy, 2015, 40(16): 5664-5676. DOI: 10.1016/j.ijhydene.2015.02.123.
[17] RABIENATAJ DARZI A A, HASSANZADEH AFROUZI H, MOSHFEGH A, FARHADI M. Absorption and desorption of hydrogen in long metal hydride tank equipped with phase change material jacket[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9595-9610. DOI: 10.1016/j.ijhydene.2016.04.051.
[18] LEWIS S D, CHIPPAR P. Analysis of heat and mass transfer during charging and discharging in a metal hydride-phase change material reactor[J]. Journal of Energy Storage, 2021, 33:102108. DOI: 10.1016/j.est.2020.102108.
[19] YAO J, ZHU P F, GUO L L, DUAN L, ZHANG Z X, KURKO S, et al. A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28087-28099. DOI: 10.1016/j.ijhydene.2020.05.089.
[20] 王玉琪,杨福胜,张早校,冯霄,郭权发.金属氢化物反应器的设计与过程模拟[J].西安交通大学学报,2006,40(7):831-835. 10.3321/j.issn:0253-987X.2006.07.021. WANG Y Q, YANG F S, ZHANG Z X, FENG X, GUO Q F. Design and process simulation of metal hydride reactors[J]. Journal of Xi'an Jiaotong University, 2006, 40(7): 831-835.
[21] PANDEY V, KRISHNA K V, MAIYA M P. Numerical modelling and heat transfer optimization of large-scale multi-tubular metal hydride reactors[J]. International Journal of Hydrogen Energy, 2023, 48(42): 16020-16036. DOI: 10.1016/j.ijhydene.2023.01.058.
[22] CHUNG C A, CHEN Y Z, CHEN Y P, CHANG M S. CFD investigation on performance enhancement of metal hydride hydrogen storage vessels using heat pipes[J]. Applied Thermal Engineering, 2015, 91: 434-446. DOI: 10.1016/j.applthermaleng.2015.08.039.
[23] NYAMSI S N, YANG F S, ZHANG Z X. An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system-analytical method and numerical simulation[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16078-16092. DOI: 10.1016/j.ijhydene.2012.08.074.
[24] FEREKH S, GWAK G, KYOUNG S, KANG H G, CHANG M H, YUN S H, et al. Numerical comparison of heat-fin-and metal-foam-based hydrogen storage beds during hydrogen charging process[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14540-14550. DOI: 10.1016/j.ijhydene.2015.07.149.
[25] TSAI M L, YANG T S. On the selection of metal foam volume fraction for hydriding time minimization of metal hydride reactors[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11052-11063. DOI: 10.1016/j.ijhydene.2010.07.081.
[26] BAI X S, YANG W W, TANG X Y, DAI Z Q, YANG F S. Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device[J]. Energy, 2022, 243: 123044. DOI: 10.1016/j.energy.2021.123044.
[27] BAI X S, YANG W W, YANG Y J, ZHANG K R, YANG F S. Multi-variable optimization of metal hydride hydrogen storage reactor with gradient porosity metal foam and evaluation of comprehensive performance[J]. International Journal of Hydrogen Energy, 2022, 47(83): 35340-35351. DOI: 10.1016/j.ijhydene.2022.08.123.
[28] PARK I S, KIM J K, KIM K J, ZHANG J X, PARK C, GAWLIK K. Investigation of coupled AB5 type high-power metal hydride reactors[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5770-5777. DOI: 10.1016/j.ijhydene.2009.05.012.
[29] KIM K J, MONTOYA B, RAZANI A, LEE K H. Metal hydride compacts of improved thermal conductivity[J]. International Journal of Hydrogen Energy, 2001, 26(6): 609-613. DOI:10.1016/S0360-3199(00)00115-4.
[30] GATTIA D M, GIZER G, MONTONE A. Effects of the compaction pressure and of the cycling process on kinetics and microstructure of compacted MgH2-based mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9924-9930. DOI:10.1016/j.ijhydene.2014.02.022.
[31] CHAISE A, DE RANGO P, MARTY P, FRUCHART D, MIRAGLIA S, OLIV?S R, et al. Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite[J]. International Journal of Hydrogen Energy, 2009, 34(20): 8589-8596. DOI: 10.1016/j.ijhydene.2009.07.112.
[32] BAO Z W, YAN D, ZHU Z Z, WU D J. Performance investigation of metal hydride reactors adopting multilayer bed with graded content of expanded natural graphite for thermochemical heat storage[J]. Applied Thermal Engineering, 2021, 188: 116602. DOI: 10.1016/j.applthermaleng.2021.116602.
[33] FENG P H, ZHU L Y, ZHANG Y, YANG F S, WU Z, ZHANG Z X. Optimum output temperature setting and an improved bed structure of metal hydride hydrogen storage reactor for thermal energy storage[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19313-19325. DOI: 10.1016/j.ijhydene.2018.04.220.
[34] LEE S G, KIM Y K, LEE J Y. Operating characteristics of metal hydride heat pump using Zr-based laves phases[J]. International Journal of Hydrogen Energy, 1995, 20(1): 77-85. DOI: 10.1016/0360-3199(93)E0005-6.
[35] JANA S, MUTHUKUMAR P. Design, development and hydrogen storage performance testing of a tube bundle metal hydride reactor[J]. Journal of Energy Storage, 2023, 63: 106936. DOI: 10.1016/j.est.2023.106936.
[36] JEMNI A, NASRALLAH S B. Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor[J]. International Journal of Hydrogen Energy, 1995, 20(11): 881-891. DOI: 10.1016/0360-3199(94)00115-G.
[37] RABIENATAJ DARZI A A, HASSANZADEH AFROUZI H, ALIZADEH E, SHOKRI V, FARHADI M. Numerical simulation of heat and mass transfer during absorption of hydrogen in metal hydride tank[J]. Heat Transfer-Asian Research, 2017, 46(1): 75-90. DOI: 10.1002/htj.21199.
[38] SUNKU PRASAD J, MUTHUKUMAR P. Design of metal hydride reactor for medium temperature thermochemical energy storage applications[J]. Thermal Science and Engineering Progress, 2023, 37: 101570. DOI: 10.1016/j.tsep.2022.101570.
[39] BHOURI M, GOYETTE J, HARDY B J, ANTON D L. Honeycomb metallic structure for improving heat exchange in hydrogen storage system[J]. International Journal of Hydrogen Energy, 2011, 36(11): 6723-6738. DOI: 10.1016/j.ijhydene.2011.02.092.
[40] MELLOULI S, ABHILASH E, ASKRI F, BEN NASRALLAH S. Integration of thermal energy storage unit in a metal hydride hydrogen storage tank[J]. Applied Thermal Engineering, 2016, 102: 1185-1196. DOI: 10.1016/j.applthermaleng.2016.03.116.
[41] MENG X Y, WU Z, BAO Z W, YANG F S, ZHANG Z X. Performance simulation and experimental confirmation of a mini-channel metal hydrides reactor[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15242-15253. DOI: 10.1016/j.ijhydene.2013.09.056.
[42] RAJU N N, MUTHUKUMAR P, SELVAN P V,MALLESWARARAO K. Design methodology and thermal modelling of industrial scale reactor for solid state hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20278-20292. DOI: 10.1016/j.ijhydene.2019.05.193.
[43] KARMAKAR A, MALLIK A, GUPTA N, SHARMA P. Studies on 10 kg alloy mass metal hydride based reactor for hydrogen storage[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5495-5506. DOI: 10.1016/j.ijhydene.2020.11.091.
[44] JANA S, RAJU N N, MUTHUKUMAR P. Performance tests on embedded cooling tube type metal hydride reactor for heating and cooling applications[J]. Thermal Science and Engineering Progress, 2022, 33: 101349. DOI: 10.1016/j.tsep.2022.101349.
[45] LIU Y, AYUB I, KHAN M R, YANG F S, WU Z, ZHANG Z X. Numerical investigation of metal hydride heat storage reactor with two types multiple heat transfer tubes structures[J]. Energy, 2022, 253: 124142. DOI: 10.1016/j.energy.2022.124142.
[46] AADHITHIYAN A K, SREERAJ R, ANBARASU S. Thermal modelling and performance evaluation of LmNi4.91Sn0.15 hydride bed configurations for space-constrained thermal applications[J]. Applied Thermal Engineering, 2022, 216: 119116. DOI: 10.1016/j.applthermaleng.2022.119116.
[47] MOU X F, BAO Z W, HUANG W X. Performance investigation of metal hydride reactor equipped with helically coiled heat exchanger during hydrogen absorption and desorption[J]. Thermal Science and Engineering Progress, 2023, 38: 101656. DOI: 10.1016/j.tsep.2023.101656.
[48] ZHENG S S, WANG Y Q, WANG D, GUAN S N, LIU Y, WANG F, et al. Design and performance study on the primary &secondary helical-tube reactor[J]. Energy, 2023, 263(Part D):125840. DOI: 10.1016/j.energy.2022.125840.
[49] LI H D, WANG Y Q, HE C, CHEN X Y, ZHANG Q Y, ZHENG L, et al. Design and performance simulation of the spiral mini-channel reactor during H2 absorption[J]. International Journal of Hydrogen Energy, 2015, 40(39):13490-13505. DOI: 10.1016/j.ijhydene.2015.08.066.
[50] DHAOU H, SOUAHLIA A, MELLOULI S, ASKRI F, JEMNI A, BEN NASRALLAH S. Experimental study of a metal hydride vessel based on a finned spiral heat exchanger[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1674-1680. DOI:10.1016/j.ijhydene.2009.11.094.
[51] VISARIA M, MUDAWAR I. Coiled-tube heat exchanger for high-pressure metal hydride hydrogen storage systems-Part 1. Experimental study[J]. International Journal of Heat and Mass Transfer, 2012, 55(5/6): 1782-1795. DOI: 10.1016/j.ijheatmasstr ansfer.2011.11.035.
[52] WU Z, YANG F S, ZHANG Z X, BAO Z W. Magnesium based metal hydride reactor incorporating helical coil heat exchanger:simulation study and optimal design[J]. Applied Energy, 2014, 130: 712-722. DOI: 10.1016/j.apenergy.2013.12.071.
[53] MELLOULI S, ASKRI F, DHAOU H, JEMNI A, BEN NASRALLAH S. Numerical simulation of heat and mass transfer in metal hydride hydrogen storage tanks for fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1693-1705. DOI: 10.1016/j.ijhydene.2009.12.052.
[54] SINGH A, MAIYA M P, MURTHY S S. Effects of heat exchanger design on the performance of a solid state hydrogen storage device[J]. International Journal of Hydrogen Energy, 2015, 40(31): 9733-9746. DOI: 10.1016/j.ijhydene.2015.06.015.
[55] CHANDRA S, SHARMA P, MUTHUKUMAR P, TATIPARTI S S V. Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8794-8809. DOI: 10.1016/j.ijhydene.2020.01.115.
[56] KESHARI V, MAIYA M P. Design and investigation of hydriding alloy based hydrogen storage reactor integrated with a pin fin tube heat exchanger[J]. International Journal of Hydrogen Energy, 2018, 43(14): 7081-7095. DOI: 10.1016/j.ijhydene.2018.02.100.
[57] BAI X S, YANG W W, ZHANG W Y, YANG F S, TANG X Y. Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and cooling jacket heat exchanger[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28100-28115. DOI: 10.1016/j.ijhydene.2020.04.209.
[58] EL MGHARI H, HUOT J, TONG L, XIAO J S. Selection of phase change materials, metal foams and geometries for improving metal hydride performance[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14922-14939. DOI: 10.1016/j.ijhydene.2020.03.226.
[59] ZHANG S W, YANG F S, ZHOU L, ZHANG Y, WU Z, ZHANG Z X, et al. A novel multilayer fin structure for heat transfer enhancement in hydride-based hydrogen storage reactor[J]. International Journal of Energy Research, 2018, 42(12): 3837-3850. DOI: 10.1002/er.4115.
[60] LEWIS S D, CHIPPAR P. Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger[J]. Energy, 2020, 194: 116942. DOI:10.1016/j.energy.2020.116942.
[61] AFZAL M, SHARMA P. Design and computational analysis of a metal hydride hydrogen storage system with hexagonal honeycomb based heat transfer enhancements-part A[J]. International Journal of Hydrogen Energy, 2021, 46(24):13116-13130. DOI: 10.1016/j.ijhydene.2021.01.135.
[62] WANG D, WANG Y Q, WANG F, ZHENG S S, GUAN S N, ZHENG L, et al. Hydrogen storage in branch mini-channel metal hydride reactor: optimization design, sensitivity analysis and quadratic regression[J]. International Journal of Hydrogen Energy, 2021, 46(49): 25189-25207. DOI: 10.1016/j.ijhydene.2021.05.051.
[63] BAI X S, YANG W W, TANG X Y, YANG F S, JIAO Y H, YANG Y. Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: a numerical study[J]. Energy, 2021, 220: 119738. DOI: 10.1016/j.energy.2020.119738.
[64] ROSTAMI A K, ALIZADEH M, FAZLOLLAHTABAR A, GANJI D D. Performance enhancement of a maple leaf-shaped latent heat energy storage unit by adding nanoparticles and leaf vein fins[J]. Journal of Energy Storage, 2021, 43: 103159. DOI:10.1016/j.est.2021.103159.
[65] KRISHNA K V, PANDEY V, MAIYA M P. Bio-inspired leaf-vein type fins for performance enhancement of metal hydride reactors[J]. International Journal of Hydrogen Energy, 2022, 47(56): 23694-23709. DOI: 10.1016/j.ijhydene.2022.05.163.
[66] MACDONALD B D, ROWE A M. Impacts of external heat transfer enhancements on metal hydride storage tanks[J]. International Journal of Hydrogen Energy, 2006, 31(12):1721-1731. DOI: 10.1016/j.ijhydene.2006.01.007.
[67] MOHAN G, PRAKASH MAIYA M, SRINIVASA MURTHY S. The performance simulation of air-cooled hydrogen storage device with plate fins[J]. International Journal of Low-Carbon Technologies, 2010, 5(1): 25-34. DOI:10.1093/ijlct/ctp039.
[68] WANG D, WANG Y Q, WANG F, ZHENG S S, GUAN S N, ZHENG L, et al. Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency[J]. Applied Energy, 2022, 308: 118389. DOI: 10.1016/j.apenergy. 2021.118389.
[69] ARDAHAIE S S, HOSSEINI M J, EISAPOUR M, EISAPOUR A H, RANJBAR A A. A novel porous metal hydride tank for hydrogen energy storage and consumption assisted by PCM jackets and spiral tubes[J]. Journal of Cleaner Production, 2021, 311: 127674. DOI: 10.1016/j.jclepro.2021. 127674.
[70] HASSAN I A, MOHAMMED R H, RAMADAN H S, SALEH M A, CUEVAS F, HISSEL D. Performance evaluation of a novel concentric metal hydride reactor assisted with phase change material[J]. Applied Thermal Engineering, 2023, 224:120065. DOI: 10.1016/j.applthermaleng.2023.120065.
[71] ALQAHTANI T, MELLOULI S, BAMASAG A, ASKRI F, PHELAN P E. Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23076-23092. DOI: 10.1016/j.ijhydene.2020.06.126.
[72] ALQAHTANI T, BAMASAG A, MELLOULI S, ASKRI F, PHELAN P E. Cyclic behaviors of a novel design of a metal hydride reactor encircled by cascaded phase change materials[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32285-32297. DOI: 10.1016/j.ijhydene.2020.08.280.
[73] YAO J, ZHU P F, QIAN C H, HAMIDULLAH U, KURKO S, YANG F S, et al. Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system[J]. Energy Conversion and Management, 2020, 213: 112864. DOI: 10.1016/j.enconman.2020.112864.
[74] MELLOULI S, ASKRI F, ABHILASH E, BEN NASRALLAH S. Impact of using a heat transfer fluid pipe in a metal hydride-phase change material tank[J]. Applied Thermal Engineering, 2017, 113: 554-565. DOI: 10.1016/j.applthermaleng.2016.11.065.
[75] TONG L, XIAO J S, B?NARD P, CHAHINE R. Thermal management of metal hydride hydrogen storage reservoir using phase change materials[J]. International Journal of Hydrogen Energy, 2019, 44(38): 21055-21066. DOI: 10.1016/j.ijhydene.2019.03.127.
[76] YE Y, YUE Y, LU J F, DING J, WANG W L, YAN J Y. Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials[J]. Renewable Energy, 2021, 180: 734-743. DOI:10.1016/j.renene.2021.08.118.
[77] BHOURI M, B?RGER I, LINDER M. Feasibility analysis of a novel solid-state H2 storage reactor concept based on thermochemical heat storage: MgH2 and Mg(OH)2 as reference materials[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20549-20561. DOI: 10.1016/j.ijhydene.2016.09.125.
[78] LUTZ M, LINDER M, B?RGER I. High capacity, low pressure hydrogen storage based on magnesium hydride and thermochemical heat storage: experimental proof of concept[J]. Applied Energy, 2020, 271: 115226. DOI: 10.1016/j.apenergy.2020.115226.
[79] CHANG H, TAO Y B, YE H. Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material[J]. International Journal of Hydrogen Energy, 2023, 48(52): 20006-20019. DOI:10.1016/j.ijhydene.2023.02.063.

相似文献/References:

[1]廖艺涵 王艺 郑度奎 李敬法 宇波  李建立.金属氢化物储氢反应器的热管理研究进展[J].油气储运,2024,43(07):1.
 Liao Yi-Han,Wang Yi,ZHENG Du-Kui,et al.Advances in Thermal Management of Metal Hydride Hydrogen Storage Reactors[J].Oil & Gas Storage and Transportation,2024,43(03):1.

备注/Memo

廖艺涵,男,1997年生,在读博士生,2022年硕士毕业于中国石油大学(华东)油气储运工程专业,现主要从事金属氢化物固态储氢装置应用研究。地址:北京市昌平区府学路18号,102249。电话:18244258306。Email:yhliao_cup@163.com
通信作者:王艺,男,1982年生,教授,博士生导师,2011年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事油气长距离管输技术研究。地址:北京市昌平区府学路 18 号,102249。电话:18810905760。 Email:wangyi1031@cup.edu.cn
基金项目:国家自然科学基金资助项目“城镇掺氢燃气管道掺混/分层传质机理及高精度随动流量掺氢调控机制研究”,52372311;国家重点研发计划“氢能技术”重点专项“中低压纯氢与掺氢燃气管输工艺与掺氢设备研发”,2021YFB4001602。
· Received: 2023-10-25 · Revised: 2023-11-29 · Online: 2024-01-02

更新日期/Last Update: 2024-03-25