[1]李睿.油气管道内检测技术与数据分析方法发展现状及展望[J].油气储运,2024,43(03):241-256.[doi:10.6047/j.issn.1000-8241.2024.03.001]
 LI Rui.Current progress and prospects of in-line inspection techniques and data analysis methods for oil and gas pipelines[J].Oil & Gas Storage and Transportation,2024,43(03):241-256.[doi:10.6047/j.issn.1000-8241.2024.03.001]
点击复制

油气管道内检测技术与数据分析方法发展现状及展望

参考文献/References:

[1] 宋凯,康宜华,孙燕华,武新军.漏磁与涡流复合探伤时信号产生机理研究[J].机械工程学报,2009,45(7):233-237. 10.3901/JME.2009.07.233. SONG K, KANG Y H, SUN Y H, WU X J. Study of signal mechanism based on combining magnetic flux leakage and eddy current testing[J]. Journal of Mechanical Engineering, 2009, 45(7): 233-237.
[2] 杨理践,耿浩,高松巍.长输油气管道漏磁内检测技术[J].仪器仪表学报,2016,37(8):1736-1746. 10.3969/j.issn.0254-3087. 2016.08.005. YANG L J, GENG H, GAO S W. Magnetic flux leakage internal detection technology of the long distance oil pipeline[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1736-1746.
[3] 吴志平,玄文博,戴联双,李妍,常景龙,王富祥.管道内检测技术与管理的发展现状及提升策略[J].油气储运,2020,39(11):1219-1227. 10.6047/j.issn.1000-8241.2020.11.002. WU Z P, XUAN W B, DAI L S, LI Y, CHANG J L, WANG F X. Development status and improvement strategy of in-line inspection technology and management[J]. Oil & Gas Storage and Transportation, 2020, 39(11): 1219-1227.
[4] 耿浩.高速漏磁检测技术中若干关键问题研究[D].沈阳:沈阳工业大学,2020. GENG H. Research on several key issues of high speed magnetic flux leakage testing technology[D]. Shenyang:Shenyang University of Technology, 2020.
[5] 张永江,陈崇祺,赫广令,王同德.高清晰度漏磁检测器的研制及应用[J].机电产品开发与创新,2008,21(4):84-86. 10.3969/j.issn.1002-6673.2008.04.034. ZHANG Y J, CHEN C Q, HE G L, WANG T D. Research of high resolution pipeline inspection tools[J]. Development & Innovation of Machinery & Electrical Products, 2008, 21(4): 84-86.
[6] 冯庆善,张海亮,王春明,贾秋菊.三轴高清漏磁检测技术优势及应用现状[J].油气储运,2016,35(10):1050-1054. 10.6047/j.issn.1000-8241.2016.10.004.FENG Q S, ZHANG H L, WANG C M, JIA Q J. Advantages of three-axial high-resolution magnetic flux leakage inspection technology and its application status[J]. Oil & Gas Storage and Transportation, 2016, 35(10): 1050-1054.
[7] 董绍华,田中山,赖少川,王同德,宋执武,彭东华,等.新一代超高清亚毫米级管道内检测技术的研发与应用[J].油气储运, 2022,41(1):34-41. 10.6047/j.issn.1000-8241. 2022.01. 005. DONG S H, TIAN Z S, LAI S C, WANG T D, SONG Z W, PENG D H, et al. Research and application of a new generation of ultra-high-definition inline detection technology with sub-millimeter precision[J]. Oil & Gas Storage and Transportation, 2022, 41(1): 34-41.
[8] 于超,张永江,李彦春,臧延旭,王金星,林传波,等.管道横向励磁漏磁内检测器研制[J].油气储运,2020,39(9):1037-1041. 10.6047/j.issn.1000-8241.2020.09.011. YU C, ZHANG Y J, LI Y C, ZANG Y X, WANG J X, LIN C B, et al. Development of transverse excitation MFL inline detector[J]. Oil & Gas Storage and Transportation, 2020, 39(9):1037-1041.
[9] 耿丽媛.两种励磁方式漏磁内检测的简化试验对比[J].油气储运,2018,37(4):385-389. 10.6047/j.issn.1000-8241.2018. 04.004.GENG L Y. Simplified test comparison of two excitation modes in MFL internal inspections[J]. Oil & Gas Storage and Transportation, 2018, 37(4): 385-389.
[10] KIRKWOOD M. Overcoming limitations of current in-line inspection technology by applying a new approach using spiral magnetic flux leakage (SMFL)[C]. Hannover: Pipeline Technology Conference 2011, 2011.
[11] ZHANG H, ZHANG S M, LIU S H, ZHU X X, TANG B. Chatter vibration phenomenon of pipeline inspection gauges (PIGs) in natural gas pipeline[J]. Journal of Natural Gas Science and Engineering, 2015, 27(Part 2): 1129-1140. DOI:10.1016/j.jngse.2015.09.054.
[12] ZHANG H, ZHANG S M, LIU S H, WANG Y, LIN L. Measurement and analysis of friction and dynamic characteristics of PIG’s sealing disc passing through girth weld in oil and gas pipeline[J]. Measurement, 2015, 64: 112-122. DOI: 10.1016/j.measurement.2014.12.046.
[13] 张行,崔灿,廖宁生,张仕民.考虑流固耦合的管道机器人冲击环焊缝过程动力学建模与分析[J].机械工程学报,2020,56(23):129-140. 10.3901/JME.2020.23.129. ZHANG H, CUI C, LIAO N S, ZHANG S M. Dynamic modeling and analysis of pipeline inspection gauge passing girth welds considering fluid-solid coupling[J]. Journal of Mechanical Engineering, 2020, 56(23): 129-140.
[14] FENG J, LU S X, LIU J H, LI F M. A sensor liftoff modification method of magnetic flux leakage signal for defect profile estimation[J]. IEEE Transactions on Magnetics, 2017, 53(7): 1-13. DOI: 10.1109/TMAG.2017.2690628.
[15] USAREK Z, CHMIELEWSKI M, PIOTROWSKI L. Reduction of the velocity impact on the magnetic flux leakage signal[J]. Journal of Nondestructive Evaluation, 2019, 38(1): 28. DOI:10.1007/s10921-019-0567-8.
[16] 付大为,郭鶱,胡铁华.正交激励磁场在铁磁性油气管道内检测中的实现[J].机电产品开发与创新,2020,33(5):1-3. 10.3969/j.issn.1002-6673.2020.05.001. FU D W, GUO X, HU T H. Realization of orthogonal excitation magnetic field in the inspection of ferromagnetic oil and gas pipelines[J]. Development & Innovation of Machinery &Electrical Products, 2020, 33(5): 1-3.
[17] 付大为,郭鶱,胡铁华.主动正交励磁在铁磁性管道内检测实验验证[J].机电产品开发与创新,2020,33(6):94-96. 10.3969/j.issn.1002-6673.2020.06.032. FU D W, GUO X, HU T H. Experimental verification of active orthogonal excitation magnetic field in the inspection of ferromagnetic pipelines[J]. Development & Innovation of Machinery & Electrical Products, 2020, 33(6): 94-96.
[18] 付大为,马强,郭鶱,胡铁华. φ1 016油气管道三维漏磁/动磁内检测设备工业示范应用[J].机电产品开发与创新,2021, 34(1):80-83. 10.3969/j.issn.1002-6673.2021.01.026. FU D W, MA Q, GUO X, HU T H. Industrial demonstration and application of 3D MFL/dynamic magnet in-line inspection tools customized for φ1 016 oil and gas pipeline[J]. Development &Innovation of Machinery & Electrical Products, 2021, 34(1): 80-83.
[19] 李振北,邱长春,杨金生,刘争.管径813 mm压电超声管道腐蚀检测器研制[J].石油机械,2022,50(1):145-152. 10.16082/j.cnki.issn.1001-4578.2022.01.019. LI Z B, QIU C C, YANG J S, LIU Z. Development of piezoelectric ultrasonic pipeline corrosion detector for 813 mm diameter of pipe[J]. China Petroleum Machinery, 2022, 50(1):145-152.
[20] BROCKHAUS S, GINTEN M, KLEIN S, TECKERT M, STAWICKI O, OEVERMANN D, et al. 10-In-line inspection (ILI) methods for detecting corrosion in underground pipelines[M]//ORAZEM M E. Underground Pipeline Corrosion. Sawston: Woodhead Publishing, 2014: 255-285.
[21] 阎石,刘丁嘉,李赢,程杨.利用压电导波层状管道结构的损伤识别[J].沈阳建筑大学学报(自然科学版),2016,32(4):619-627. 10.11717/j.issn:2095-1922.2016.04.06. YAN S, LIU D J, LI Y, CHENG Y. Damage identification for layered pipe structures using piezoelectric guided waves[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32(4): 619-627.
[22] KLANN M, BEUKER T. Pipeline inspection with the high resolution EMAT ILI-tool: report on full-Scale testing and field trials[C]. Calgary: 2006 International Pipeline Conference, 2006: 235-241.
[23] 孙峥,李永虔,杨金旭,翟国富.管道内检测电磁超声在线测厚装置[J]. 中国测试,2017,43(2):69-72. 10.11857/j.issn. 1674-5124.2017.02.014. SUN Z, LI Y Q, YANG J X, ZHAI G F. Thickness gauging equipment for ILI of pipelines using EMATs[J]. China Measurement & Test, 2017, 43(2): 69-72.
[24] 王宝超.基于电涡流传感技术的管道变形检测方法研究与设备研制[D].北京:机械科学研究总院,2020. WANG B C. Method research and equipment development of pipe deformation detection based on eddy current sensing technology[D]. Beijing: China Academy of Machinery Science and Technology, 2020.
[25] 朱佩佩.可视化涡流检测中的数据处理方法研究[D].成都:电子科技大学,2019. ZHU P P. Research on data processing methods based on visible eddy current testing[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[26] 王晓司,王勇,杨静,王晓霖.电磁超声和漏磁管道内检测技术对比分析[J].石油化工自动化,2018,54(5):55-57. WANG X S, WANG Y, YANG J, WANG X L. Comparison and analysis of electromagnetic acoustic transducer and magnetic flux leakage in pipelines internal inspection technology[J]. Automation in Petro-Chemical Industry, 2018, 54(5): 55-57.
[27] 陈杰.储罐底板漏磁与电磁超声复合检测系统[D].武汉:华中科技大学,2017.CHEN J. Magnetic flux leakage and electromagnetic acoustic combined testing system for tank floor plate[D]. Wuhan:Huazhong University of Science & Technology, 2017.
[28] 陈承曦.基于钢管旋转的漏磁超声复合检测方法与装备[D].武汉:华中科技大学,2014. CHEN C X. The magnetic flux leakage and ultrasonic hybrid NDT method and system based on steel pipe rotating[D]. Wuhan: Huazhong University of Science & Technology, 2014.
[29] AMINEH R K, RAVAN M, SADEGHI S H H, MOINI R. Using AC field measurement data at an arbitrary liftoff distance to size long surface-breaking cracks in ferrous metals[J]. NDT & E International, 2008, 41(3): 169-177. DOI: 10.1016/j.ndteint.2007.10.002.
[30] 李伟,袁新安,陈国明,葛玖浩,贾廷亮,姜永胜.基于ACFM的隔水管表面裂纹链式阵列检测探头设计与试验研究[J].机械工程学报,2017,53(8):8-15. 10.3901/JME.2017.08.008. LI W, YUAN X A, CHEN G M, GE J H, JIA T L, JIANG Y S. Research on the detection of surface cracks on drilling riser using the chain alternating current field measurement probe array[J]. Journal of Mechanical Engineering, 2017, 53(8):8-15.
[31] 李伟,邵鑫宇,张伯莹,袁新安,殷晓康,杨伟超.交流电磁场和电磁超声复合无损检测技术研究[J].机械工程学报, 2022,58(16):153-159. 10.3901/JME.2022.16.153. LI W, SHAO X Y, ZHANG B Y, YUAN X A, YIN X K, YANG W C. Research on composite ACFM and EMAT nondestructive testing technology[J]. Journal of Mechanical Engineering, 2022, 58(16): 153-159.
[32] WILLEMS H, JASKOLLA B, SICKINGER T, SICKINGER A, NIESE F. A new ILI tool for metal loss inspection of gas pipelines using a combination of ultrasound, eddy current and MFL[C]. Calgary: 2010 8th International Pipeline Conference, 2010: 557-564.
[33] 唐华溢.涡流与电磁超声复合无损检测技术研究[D].杭州:浙江大学,2014. TANG H Y. Research on composite non-destructive detection technology of ECT and EMAT[D]. Hangzhou: Zhejiang University, 2014.
[34] 高月辉.储罐底板涡流漏磁复合检测技术研究[D].大庆:东北石油大学,2022.GAO Y H. Research on eddy current magnetic flux leakage composite testing technology[D]. Daqing: Northeast Petroleum University, 2022.
[35] 张智超,沈常宇,朱周洪,刘洋,李光海.漏磁结合涡流的非铁磁性金属材料探伤研究[J].仪器仪表学报,2021,42(4):150-159. 10.19650/j.cnki.cjsi.J2107377. ZHANG Z C, SHEN C Y, ZHU Z H, LIU Y, LI G H. Magnetic flux leakage combined with eddy current for non-ferromagnetic metal materials damage detection[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 150-159.
[36] CHEN P C, LI R, FU K, ZHONG Z K , XIE J L, WANG J L, et al. A cascaded deep learning approach for detecting pipeline defects via pretrained YOLOv5 and ViT models based on MFL data[J]. Mechanical Systems and Signal Processing, 2024, 206:110919.
[37] 邵卫林,何湋,杨白冰,周地清,梁方兴,孟涛,等.成品油管道内检测清管技术[J].油气储运,2019,38(11):1232-1239. 10.6047/j.issn.1000-8241.2019.11.005. SHAO W L, HE W, YANG B B, ZHOU D Q, LIANG F X, MENG T, et al. A pigging technology for in-line inspection of products pipeline[J]. Oil & Gas Storage and Transportation, 2019, 38(11): 1232-1239.
[38] WANG H, ZHU X X, FANG Y, ZHANG H, ZHANG S M. Study on the detection arm accuracy of a leaf spring caliper for detecting internal convex defects in gas pipelines[J]. Measurement Science & Technology, 2018, 29(8): 085901. DOI:10.1088/1361-6501/aac753.
[39] 张行,唐步云,刘彤,董绍华.油气管道柔性测径传感器设计及其结构优化[J].仪器仪表学报,2022,43(12):15-25. 10.19650/j.cnki.cjsi.J2210148. ZHANG H, TANG B Y, LIU T, DONG S H. Design and structural optimization of the flexible sizing sensors for oil and gas pipelines[J]. Chinese Journal of Scientific Instrument, 2022, 43(12): 15-25.
[40] 李晓龙,陈金忠,马义来,何仁洋,孟涛,辛佳兴,等.油气管道复合变形内检测技术研究[J].石油机械,2021,49(8):152-158. 10.16082/j.cnki.issn.1001-4578.2021.08.020. LI X L, CHEN J Z, MA Y L, HE R Y, MENG T, XIN J X, et al. A composite in-line detection technology for oil and gas pipeline deformation[J]. China Petroleum Machinery, 2021, 49(8): 152-158.
[41] 赵育晗.基于强弱磁耦合技术的管道应力检测方法研究[D].沈阳工业大学,2022. ZHAO Y H. Research on pipeline stress detection method based on strong and weak magnetic coupling technology[D]. Shenyang:Shenyang University of Technology, 2022.
[42] Baker Hughes. Pipeline inspection threat matrix Poster[EB/OL]. [2024-01-07]. https://www.bakerhughes.com/pipeline-inspection-threat-matrix-poster.
[43] DUAN J Y, SONG K, XIE W Y. Application of alternating current stress measurement method in the stress detection of long-distance oil pipelines[J]. Energies, 2022, 15(14): 4965.
[44] EIKEN T, THALE W. A novel non destructive technology for pipe grade determination and MAOP/design pressure validation of operating pipelines[C]. Munich: 19th World Conference on Non-Destructive Testing 2016, 2016.
[45] 曾小红,陈亮,李兴.漏磁信号处理中的经验模态分解和能量法阈值[J].无损检测,2011,33(3):27-30. ZENG X H, CHEN L, LI X. The empirical mode decomposition and energy threshold in magnetic flux leakage signal processing[J]. Nondestructive Testing, 2011, 33(3):27-30.
[46] 陈亮,王柯,孟庆愿,曾小红,梁巍.二维经验模态分解法在漏磁图像处理中的应用[J].实验室研究与探索,2012,31(6):28-31. 10.3969/j.issn.1006-7167.2012.06.008. CHEN L, WANG K, MENG Q Y, ZENG X H, LIANG W. BEMD for magnetic flux leakage image denoising[J]. Research and Exploration in Laboratory, 2012, 31(6): 28-31.
[47] 杨杰,李红梅,赵春田,杨洪礼.基于相似波形的漏磁检测缺陷信号小波分解及提取方法[J].电气技术,2022,23(6):8-16. 10.3969/j.issn.1673-3800.2022.06.002. YANG J, LI H M, ZHAO C T, YANG H L. Wavelet decomposition and extraction method of defect magnetic flux leakage testing signals based on waveform similarity[J]. Electrical Engineering, 2022, 23(6): 8-16.
[48] 曹辉.基于漏磁内检测的输油管道缺陷识别方法研究[D].沈阳:沈阳工业大学,2020. CAO H. Research on oil pipeline defect identification method based on magnetic flux leakage internal detection[D]. Shenyang:Shenyang University of Technology, 2020.
[49] 杨理践,余文来,高松巍,孔丽新.管道漏磁检测缺陷识别技术[J].沈阳工业大学学报,2010,32(1):65-69.YANG L J, YU W L, GAO S W, KONG L X. Defect recognition technology of magnetic flux leakage detection for pipeline[J]. Journal of Shenyang University of Technology, 2010, 32(1): 65-69.
[50] 庞家栋.基于漏磁检测的管道损伤缺陷仿真与分类识别研究[D].北京:中国石油大学(北京),2019. PANG J D. Research on simulation and classification of pipeline damage defects based on magnetic flux leakage detection[D]. Beijing: China University of Petroleum(Beijing), 2019.
[51] 李璇.基于目标检测的管道漏磁内检测缺陷识别方法研究[D].沈阳:沈阳工业大学,2022. LI X. Research on defect recognition method of pipeline magnetic flux leakage internal detection based on object detection[D]. Shenyang: Shenyang University of Technology, 2022.
[52] 王竹筠,杨理践,高松巍.基于改进SSD网络的管道漏磁缺陷图像识别算法[J].沈阳航空航天大学学报,2019,36(3):74-82. 10.3969/j.issn.2095-1248.2019.03.012. WANG Z J, YANG L J, GAO S W. Pipeline magnetic flux leakage image detection algorithm based on improved SSD network[J]. Journal of Shenyang Aerospace University, 2019, 36(3): 74-82.
[53] LIU J H, FU M R, LIU F L, FENG J, CUI K Q. Window feature-based two-stage defect identification using magnetic flux leakage measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(1): 12-23. DOI:10.1109/TIM.2017.2755918.
[54] 陈俊杰.油气管道漏磁检测缺陷区域的分段识别方法[J].中国测试,2017,43(11):1-7. 10.11857/j.issn.1674-5124.2017. 11.001. CHEN J J. Segmentation identification method for defect area of MFL detection of oil and gas pipelines[J]. China Measurement &Test, 2017, 43(11): 1-7.
[55] 崔凯.基于支持向量机和极限学习机的管道缺陷分类方法研究[D].沈阳:东北大学,2014. CUI K. Research on the method of pipeline defect classification based on SVM and ELM[D]. Shenyang: Northeastern University, 2014.
[56] 赵翰学,张咪,郭岩宝,王德国,何仁洋.基于机器学习的管道金属损失缺陷识别方法[J].石油机械,2020,48(12):138-145. 10.16082/j.cnki.issn.1001-4578.2020.12.020.ZHAO H X, ZHANG M, GUO Y B, WANG D G, HE R Y. Recognition method of pipeline metal loss defects based on machine learning[J]. China Petroleum Machinery, 2020, 48(12):138-145.
[57] 张鑫博.基于机器学习的漏磁信号异常检测方法研究[D].沈阳:东北大学,2017. ZHANG X B. Research of the magnetic leakage signal anomaly detection based on machine learning[D]. Shenyang:Northeastern University, 2017.
[58] KHODAYARI-ROSTAMABAD A, REILLY J P, NIKOLOVA N K, HARE J R, PASHA S. Machine learning techniques for the analysis of magnetic flux leakage images in pipeline inspection[J]. IEEE Transactions on Magnetics, 2009, 45(8): 3073-3084. DOI: 10.1109/TMAG.2009. 2020160.
[59] LANG X M, ZHENG H, SONG H D, LIU J H, CUO X T, MENG Q, et al. Weld defect recognition method of pipeline based on improved least squares twin support vector machine[C]. Puglia: 2021 29th Mediterranean Conference on Control and Automation (MED), 2021: 500-505.
[60] 杨海英.基于支持向量机的管道漏磁检测信号识别方法研究[D].大庆:东北石油大学,2012. YANG H Y. Research on the recognition method based on SVM to the pipeline magnetic flux leakage signals[D]. Daqing:Northeast Petroleum University, 2012.
[61] LANG X M, HAN F C. MFL image recognition method of pipeline corrosion defects based on multilayer feature fusion multiscale GhostNet[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-8. DOI: 10.1109/TIM.2022.3199247.
[62] LIU S C, WANG H J, LI R. Attention module magnetic flux leakage linked deep residual network for pipeline in-line inspection[J]. Sensors, 2022, 22(6): 2230. DOI: 10.3390/s22062230.
[63] 岳明星,杨理践,石萌.基于卷积神经网络的管道漏磁内检测焊缝识别方法[J].电子世界,2018(12):49-50. 10.19353/j.cnki.dzsj.2018.12.021. YUE M X, YANG L J, SHI M. Weld identification method for pipeline flux leakage detection based on convolutional neural network[J]. Electronics World, 2018(12): 49-50.
[64] 敖太平.天然气管道内壁漏磁检测系统研究[D].成都:西华大学,2019.AO T P. Research on magnetic flux leakage detection system for inner wall of natural gas pipeline[D]. Chengdu: Xihua University, 2019.
[65] YANG L J, WANG Z J, GAO S W, SHI M, LIU B L. Magnetic flux leakage image classification method for pipeline weld based on optimized convolution kernel[J]. Neurocomputing, 2019, 365: 229-238. DOI: 10.1016/j.neucom.2019.07.083.
[66] ZHANG Y, YE Z F, WANG C. A fast method for rectangular crack sizes reconstruction in magnetic flux leakage testing[J]. NDT & E International, 2009, 42(5):369-375. DOI: 10.1016/j.ndteint.2009.01.006.
[67] 杨理践,梁成壮,高松巍,刘斌.管道漏磁内检测的管壁缺陷漏磁场解析模型[J].电子测量与仪器学报,2021,35(7):106-114. 10.13382/j.jemi.B2003723. YANG L J, LIANG C Z, GAO S W, LIU B. Analytical model of magnetic flux leakage field of pipe wall defects based on magnetic flux leakage internal detection[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(7): 106-114.
[68] 宁营超,杨理践,耿浩,夏浩,高松巍.管道漏磁内检测矩形缺陷解析方法的分析[J].无损检测,2022,44(5):53-59. 10.11973/wsjc202205012. NING Y C, YANG L J, GENG H, XIA H, GAO S W. Analysis of analytical method of rectangular defects in pipeline magnetic field leakage internal detection[J]. Nondestructive Testing, 2022, 44(5): 53-59.
[69] YAN M, UDPA S, MANDAYAM S, SUN Y, SACKS P, LORD W. Solution of inverse problems in electromagnetic NDE using finite element methods[J]. IEEE Transactions on Magnetics, 1998, 34(5): 2924-2927. DOI: 10.1109/20.717682.
[70] HAUEISEN J, UNGER R, BEUKER T, BELLEMANN M E. Evaluation of inverse algorithms in the analysis of magnetic flux leakage data[J]. IEEE Transactions on Magnetics, 2002, 38(3):1481-1488. DOI: 10.1109/20.999121.
[71] 刘玉明,王继锋,汤晓英,左延田.管道漏磁检测缺陷尺寸与信号特征参数关系分析[J].石油化工设备,2021,50(6):9-14. 10.3969/j.issn.1000-7466.2021.06.002. LIU Y M, WANG J F, TANG X Y, ZUO Y T. Relationship analysis between defect size and signal characteristic parameters in pipeline magnetic flux leakage detection[J]. Petro-Chemical Equipment, 2021, 50(6): 9-14.
[72] 苏林,马雪莉,崔德荣,王天鹰,饶连涛,郝大洋,等.基于周向励磁的管道缺陷漏磁信号仿真分析[J].电焊机,2022,52(3):20-28. 10.7512/j.issn.1001-2303.2022.03.03. SU L, MA X L, CUI D R, WANG T Y, RAO L T, HAO D Y, et al. Simulation of magnetic flux leakage signal of pipeline defect based on circumferential excitation[J]. Electric Welding Machine, 2022, 52(3): 20-28.
[73] 毕大伟.管道漏磁检测成像技术的研究[D].沈阳:沈阳工业大学,2009. BI D W. Study on imaging technology for pipeline magnetic flux leakage inspection[D]. Shenyang: Shenyang University of Technology, 2009.
[74] 宋小春,赵大兴,钟毓宁.基于漏磁检测数据的缺陷三维重构技术[J].中国机械工程,2008,19(8):905-908. 10.3321/j.issn:1004-132X.2008.08.007. SONG X C, ZHAO D X, ZHONG Y N. 3D reconstruction technology of the MFL inspection data[J]. China Mechanical Engineering, 2008, 19(8): 905-908.
[75] 杨涛.基于多传感器融合的油管无损检测与缺陷量化技术研究[D].天津:天津大学,2004. YANG T. Nondestructive testing of oil-well tubing and quantitative recognition of defects based on multi-sensor fusion[D]. Tianjin: Tianjin University, 2004.
[76] FU M R, LIU J H, ZHANG H G, LU S X. Multisensor fusion for magnetic flux leakage defect characterization under information incompletion[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4382-4392. DOI: 10.1109/TIE.2020.2984444.
[77] RAMUHALLI P, UDPA L, UDPA S S. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation[J]. Journal of Applied Physics, 2003, 93(10): 8274-8276. DOI: 10.1063/1.1558693.
[78] JOSHI A, UDPA L, UDPA S, TAMBURRINO A. Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3168-3170. DOI: 10.1109/TMAG.2006.880091.
[79] LAYOUNI M, HAMDI M S, TAHAR S. Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning[J].Applied soft Computing, 2017, 52: 247-261. DOI: 10.1016/j.asoc.2016.10.040.
[80] MOHAMED A, HAMDI M S, TAHAR S. A machine learning approach for big data in oil and gas pipelines[C]. Rome: 2015 3rd International Conference on Future Internet of Things and Cloud, 2015: 585-590.
[81] SUN H Y, PENG L S, HUANG S L, LI S S, LONG Y, WANG S, et al. Development of a physics-informed doubly fed cross-residual deep neural network for high-precision magnetic flux leakage defect size estimation[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1629-1640. DOI: 10.1109/TII.2021.3089333.
[82] YU G, LIU J H, ZHANG H G, LIU C. An iterative stacking method for pipeline defect inversion with complex MFL signals[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3780-3788. DOI: 10.1109/TIM.2019.2933171.
[83] 耿丽媛,董绍华,钱伟超,彭东华.基于DCNN的管道漏磁内检测环焊缝缺陷智能分类法[J].油气储运,2023,42(5):532-541. 10.6047/j.issn.1000-8241.2023.05.006. GENG L Y, DONG S H, QIAN W C, PENG D H. DCNN-based intelligent classification method of girth weld defects in MFL inline inspection[J]. Oil & Gas Storage and Transportation, 2023, 42(5): 532-541.

相似文献/References:

[1]黄春芳 陈燕 周芳 黄月 吴州阳 杨松 王自发. 石油天然气管道站内管道爆破吹扫[J].油气储运,2012,31(12):934.[doi:10.6047/j.issn.1000-8241.2012.06.016]
 Huang Chunfang,Chen Yan,Zhou Fang,et al. Bursting purge method in stations of oil and gas pipeline[J].Oil & Gas Storage and Transportation,2012,31(03):934.[doi:10.6047/j.issn.1000-8241.2012.06.016]
[2]戴联双,汤长江,冯治中,等.油气管道恐怖袭击风险评估方法与应用[J].油气储运,2011,30(05):337.[doi:10.6047/j.issn.1000-8241.2011.05.004]
 Dai Lianshuang,Tang Changjiang,Feng Zhizhong,et al.Risk assessment methodology and application for oil and gas pipelines’ terrorist attack[J].Oil & Gas Storage and Transportation,2011,30(03):337.[doi:10.6047/j.issn.1000-8241.2011.05.004]
[3]王乾坤,张争伟,石悦,等.埋地油气管道并行敷设技术发展现状[J].油气储运,2011,30(01):1.[doi:10.6047/j.issn.1000-8241.2011.01.001]
 Wang Qiankun,Zhang Zhengwei,Shi Yue,et al.Development status of the parallel laying technology in underground oil & gas pipelines[J].Oil & Gas Storage and Transportation,2011,30(03):1.[doi:10.6047/j.issn.1000-8241.2011.01.001]
[4]马伟平,贾子麒,赵晋云,等.美国油气管道法规和标准体系的管理模式[J].油气储运,2011,30(01):5.[doi:10.6047/j.issn.1000-8241.2011.01.002]
 Ma Weiping,Jia Ziqi,Zhao Jinyun,et al.Oil and gas pipeline eegulations and management mode of standard system in America[J].Oil & Gas Storage and Transportation,2011,30(03):5.[doi:10.6047/j.issn.1000-8241.2011.01.002]
[5]李鹤林.油气管道失效控制技术[J].油气储运,2011,30(06):401.[doi:10.6047/j.issn.1000-8241.2011.06.001]
 Li Helin.Failure control technique of oil & gas pipeline[J].Oil & Gas Storage and Transportation,2011,30(03):401.[doi:10.6047/j.issn.1000-8241.2011.06.001]
[6]荆宏远,郝建斌,陈英杰,等.管道地质灾害风险半定量评价方法与应用[J].油气储运,2011,30(07):497.[doi:10.6047/j.issn.1000-8241.2011.07.005]
 Jing Hongyuan,Hao Jianbin,Chen Yingjie,et al.Technique and application of geologic hazard risk semi-quantitative assessment of pipeline[J].Oil & Gas Storage and Transportation,2011,30(03):497.[doi:10.6047/j.issn.1000-8241.2011.07.005]
[7]陈敬和.管道外腐蚀直接评价技术[J].油气储运,2011,30(07):523.[doi:10.6047/j.issn.1000-8241.2011.07.012]
 Chen Jinghe.Direct assessment technology of pipeline external corrosion[J].Oil & Gas Storage and Transportation,2011,30(03):523.[doi:10.6047/j.issn.1000-8241.2011.07.012]
[8]吴琋瑛.光缆与油气管道同沟敷设应用实践[J].油气储运,2011,30(07):547.[doi:10.6047/j.issn.1000-8241.2011.07.021]
 Wu Xiying.Technique application of laying in one ditch for fiber cable and oil or gas pipeline[J].Oil & Gas Storage and Transportation,2011,30(03):547.[doi:10.6047/j.issn.1000-8241.2011.07.021]
[9]焦中良,李志文,李志勇,等.油气管道波动压力的雨流计数与分析[J].油气储运,2011,30(08):624.[doi:10.6047/j.issn.1000-8241.2011.08.007]
 Jiao Zhongliang,Li Zhiwen,Li Zhiyong,et al.Rain-flow counting analysis of the fluctuation pressure for oil & gas pipelines[J].Oil & Gas Storage and Transportation,2011,30(03):624.[doi:10.6047/j.issn.1000-8241.2011.08.007]
[10]樊文斌,罗自治,张策.管内高压封堵器的研制[J].油气储运,2011,30(08):657.[doi:10.6047/j.issn.1000-8241.2011.08.015]
 Fan Wenbin,Luo Zizhi,Zhang Ce.Development of high-pressure pipeline isolation plug[J].Oil & Gas Storage and Transportation,2011,30(03):657.[doi:10.6047/j.issn.1000-8241.2011.08.015]
[11]雷铮强,陈健,王富祥,等.基于内检测数据的管道凹陷应变计算[J].油气储运,2016,35(12):1275.[doi:10.6047/j.issn.1000-8241.2016.12.004]
 LEI Zhengqiang,CHEN Jian,WANG Fuxiang,et al.A calculation method for the strain of pipeline dents based on ILI data[J].Oil & Gas Storage and Transportation,2016,35(03):1275.[doi:10.6047/j.issn.1000-8241.2016.12.004]
[12]王俊强,何仁洋,刘哲,等.中美油气管道完整性管理规范发展现状及差异[J].油气储运,2018,37(1):6.[doi:10.6047/j.issn.1000-8241.2018.01.002]
 WANG Junqiang,HE Renyang,LIU Zhe,et al.Development status of oil & gas pipeline integrity management specification in China and the USA and their differences[J].Oil & Gas Storage and Transportation,2018,37(03):6.[doi:10.6047/j.issn.1000-8241.2018.01.002]
[13]李振北,邱长春,姜海洋,等.压电超声管道腐蚀检测传感器支撑结构振动特性[J].油气储运,2019,38(04):435.[doi:10.6047/j.issn.1000-8241.2019.04.013]
 LI Zhenbei,QIU Changchun,JIANG Haiyang,et al.Vibration characteristics of the supporting structure of piezoelectric ultrasonic pipeline corrosion detector[J].Oil & Gas Storage and Transportation,2019,38(03):435.[doi:10.6047/j.issn.1000-8241.2019.04.013]
[14]董绍华,田中山,赖少川,等.新一代超高清亚毫米级管道内检测技术的研发与应用[J].油气储运,2022,41(01):34.[doi:10.6047/j.issn.1000-8241.2022.01.005]
 DONG Shaohua,TIAN Zhongshan,LAI Shaochuan,et al.Research and application of a new generation of ultra-high-definition inline detection technology with sub-millimeter precision[J].Oil & Gas Storage and Transportation,2022,41(03):34.[doi:10.6047/j.issn.1000-8241.2022.01.005]
[15]李睿,陈健,王长友,等.管材力学性能与应力应变内检测技术及应用[J].油气储运,2023,42(04):407.[doi:10.6047/j.issn.1000-8241.2023.04.005]
 LI Rui,CHEN Jian,WANG Changyou,et al.In-line inspection technology of mechanical properties and stress-strain of pipe materials and its application[J].Oil & Gas Storage and Transportation,2023,42(03):407.[doi:10.6047/j.issn.1000-8241.2023.04.005]
[16]李睿.油气管道内检测技术及数据分析方法现状及展望[J].油气储运,2024,43(03):1.
 LI Rui.Research status and prospect of in-line inspection and data analysis method in oil and gas pipelines[J].Oil & Gas Storage and Transportation,2024,43(03):1.

备注/Memo

李睿,男,1983年生,高级工程师,2018年博士毕业于北京航空航天大学机械电子工程专业,现主要从事管道完整性及检测技术的研究工作。地址:河北省廊坊市广阳区金光道51号,065000。电话:0316-2073114。Email:kjlirui@petrochina.com.cn
基金项目:国家重点研发计划项目“中俄管道重大风险防控与安全保障关键技术”,2022YFC3070100;国家管网集团科研项目“高钢级管道检测评价技术研究”,WZXGL202104。
· Received: 2023-06-05 · Revised: 2023-08-05 · Online: 2024-01-10

更新日期/Last Update: 2024-03-25