[1]白章,韩运滨,王智,等.基于功率分配策略的风光互补复合制氢系统与容量优化[J].油气储运,2023,42(08):910-921943.[doi:10.6047/j.issn.1000-8241.2023.08.007]
 BAI Zhang,HAN Yunbin,WANG Zhi,et al.Wind-solar hybrid hydrogen production system and capacity optimization based on power allocation strategy[J].Oil & Gas Storage and Transportation,2023,42(08):910-921943.[doi:10.6047/j.issn.1000-8241.2023.08.007]
点击复制

基于功率分配策略的风光互补复合制氢系统与容量优化

参考文献/References:

[1] 黄强,郭怿,江建华,明波. “双碳”目标下中国清洁电力发展路径[J].上海交通大学学报,2021,55(12):1499-1509. 10.16183/j.cnki.jsjtu.2021.272. HUANG Q, GUO Y, JIANG J H, MING B. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiaotong University, 2021, 55(12): 1499-1509.
[2] WANG F, HARINDINTWALI J D, YUAN Z Z, WANG M, WANG F M, LI S, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4):100180. DOI: 10.1016/j.xinn.2021.100180.
[3] 荆涛,陈庚,王子豪,许朋江,李高潮,贾明晓,等.风光互补发电耦合氢储能系统研究综述[J].中国电力,2022,55(1):75-83. 10.11930/j.issn.1004-9649.202012060. JING T, CHEN G, WANG Z H, XU P J, LI G C, JIA M X, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75-83.
[4] WU Y N, ZHANG T. Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model[J]. Energy, 2021, 223: 120057. DOI: 10.1016/j.energy.2021.120057.
[5] DEYMI-DASHTEBAYAZ M, BARANOV I V, NIKITIN A, DAVOODI V, SULIN A, NORANI M, et al. An investigation of a hybrid wind-solar integrated energy system with heat and power energy storage system in a near-zero energy building-a dynamic study[J]. Energy Conversion and Management, 2022, 269: 116085. DOI: 10.1016/j.enconman.2022.116085.
[6] HAN Y L, SHI K N, QIAN Y, YANG S Y. Design and operational optimization of a methanol-integrated wind-solar power generation system[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109992. DOI: 10.1016/j.jece.2023.109992.
[7] LIU L T, ZHAI R R, HU Y D. Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: energy, exergy, economic, and enviroeconomic[J]. Energy, 2023, 276: 127386. DOI: 10.1016/j.energy.2023.127386.
[8] SHIVA KUMAR S, LIM H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy Reports, 2022, 8: 13793-13813. DOI: 10.1016/j.egyr.2022.10.127.
[9] SHIN H, JANG D, LEE S, CHO H S, KIM K H, KANG S. Techno-economic evaluation of green hydrogen production with low-temperature water electrolysis technologies directly coupled with renewable power sources[J]. Energy Conversion and Management, 2023, 286: 117083. DOI: 10.1016/j.enconman.2023.117083.
[10] WAPPLER M, UNGUDER D, LU X, OHLMEYER H, TESCHKE H, LUEKE W. Building the green hydrogen market–current state and outlook on green hydrogen demand and electrolyzer manufacturing[J]. International Journal of Hydrogen Energy, 2022, 47(79): 33551-33570. DOI: 10.1016/j.ijhydene.2022.07.253.
[11] HONSHO Y, NAGAYAMA M, MATSUDA J, ITO K, SASAKI K, HAYASHI A. Durability of PEM water electrolyzer against wind power voltage fluctuation[J]. Journal of Power Sources, 2023, 564: 232826. DOI: 10.1016/j.jpowsour.2023.232826.
[12] KOJIMA H, NAGASAWA K, TODOROKI N, ITO Y, MATSUI T, NAKAJIMA R. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(12): 4572-4593. DOI: 10.1016/j.ijhydene.2022.11.018.
[13] 李宏仲,张仪,孙伟卿.小波包分解下考虑广义储能的风电功率波动平抑策略[J].电网技术,2020,44(12):4495-4503. 10.13335/j.1000-3673.pst.2020.0514. LI H Z, ZHANG Y, SUN W Q. Wind power fluctuation smoothing strategy with generalized energy storage under wavelet packet decomposition[J]. Power System Technology, 2020, 44(12): 4495-4503.
[14] 胡滋桢,程静,王维庆,施锐.基于动态聚类的风电机组有功功率分配策略[J].电力电子技术,2022,56(10):1-4. 10.3969/j.issn.1000-100X.2022.10.001. HU Z Z, CHENG J, WANG W Q, SHI R. Active power allocation strategy for wind turbines based on dynamic clustering[J]. Power Electronics, 2022, 56(10): 1-4.
[15] 张晓宇,张建成,王宁,王冠.基于变分模态分解的混合储能系统协调控制[J].中国电力,2018,51(9):165-173. 10.11930/j.issn.1004-9649.201708091. ZHANG X Y, ZHANG J C, WANG N, WANG G. Coordinated control of hybrid energy storage system based on variational mode decomposition[J]. Electric Power, 2018, 51(9): 165-173.
[16] 刘雨佳,樊艳芳,郝俊伟,白雪岩,宋雨露.基于碱性电解槽宽功率适应模型的风光氢热虚拟电厂容量配置与调度优化[J].电力系统保护与控制,2022,50(10):48-60. 10.19783/j.cnki.pspc.210918. LIU Y J, FAN Y F, HAO J W, BAI X Y, SONG Y L. Capacity configuration and optimal scheduling of a wind-photovoltaic-hydrogen-thermal virtual power plant based on a wide range power adaptation strategy for an alkaline electrolyzer[J]. Power System Protection and Control, 2022, 50(10): 48-60.
[17] 李军舟,赵晋斌,曾志伟,毛玲,屈克庆.具有动态调节特性的光伏制氢双阵列直接耦合系统优化策略[J].电网技术,2022,46(5):1712-1721. 10.13335/j.1000-3673.pst.2021.1160. LI J Z, ZHAO J B, ZENG Z W, MAO L, QU K Q. Optimization strategy of photovoltaic hydrogen production dual array direct coupling system with dynamic regulation characteristics[J]. Power System Technology, 2022, 46(5): 1712-1721.
[18] LI Y Y, ZHANG T, DENG X T, LIU B, MA J G, YANG F Y, et al. Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system[J]. Applied Energy, 2022, 328: 120172. DOI: 10.1016/j.apenergy.2022.120172.
[19] 阮景昕,王跃社,张俊峰,徐昕歆.基于氢储能的风光氢能源系统能质转换优化策略[J].工程热物理学报,2023,44(2):413-421. RUAN J X, WANG Y S, ZHANG J F, XU X X. Energy-mass conversion optimization strategy of wind-solar-hydrogen energy system based on hydrogen energy storage[J]. Journal of Engineering Thermophysics, 2023, 44(2): 413-421.
[20] ZHANG W P, MALEKI A, NAZARI M A. Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind) by a new approach[J]. Journal of Energy Storage, 2022, 53: 104983. DOI: 10.1016/j.est.2022.104983.
[21] 张孝顺,谭恬,蒙蝶,张桂源,冯永坤.基于光伏系统的动态代理模型最大功率点跟踪算法研究[J].华电技术,2021,43(8):1-10. 10.3969/j.issn.1674-1951.2021.08.001. ZHANG X S, TAN T, MENG D, ZHANG G Y, FENG Y K. Study on dynamic surrogate model for MPPT of PV systems[J]. Huadian Technology, 2021, 43(8): 1-10.
[22] ZHANG K, ZHOU B, OR S W, LI C B, CHUNG C Y, VOROPAI N. Optimal coordinated control of Multi-Renewable-to-Hydrogen production system for hydrogen fueling stations[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2728-2739. DOI: 10.1109/TIA.2021.3093841.
[23] GHORBANI B, ZENDEHBOUDI S, MORADI M. Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer[J]. Energy, 2021, 221: 119653. DOI:10.1016/j.energy.2020.119653.
[24] HAN B, STEEN S M III, MO J K, ZHANG F Y. Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy[J]. International Journal of Hydrogen Energy, 2015, 40(22): 7006-7016. DOI: 10.1016/j.ijhydene.2015.03.164.
[25] ALIRAHMI S M, RAZMI A R, ARABKOOHSAR A. Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems[J]. Renewable and Sustainable Energy Reviews, 2021, 142: 110850. DOI:10.1016/j.rser.2021.110850.
[26] 钱宇,陈耀熙,史晓斐,杨思宇.太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J].化工学报,2022,73(5):2101-2110,2290. 10.11949/0438-1157.20211782. QIAN Y, CHEN Y X, SHI X F, YANG S Y. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system[J]. CIESC Journal, 2022, 73(5): 2101-2110, 2290.
[27] 张轩,王凯,樊昕晔,郑丽君.电解水制氢成本分析[J].现代化工,2021,41(12):7-11. 10.16606/j.cnki.issn0253-4320.2021.12.002. ZHANG X, WANG K, FAN X Y, ZHENG L J. Cost analysis on hydrogen production via water electrolysis[J]. Modern Chemical Industry, 2021, 41(12): 7-11.

相似文献/References:

[1]陈昱杉,李琦,郑博,等.基于风光氢储一体化系统的容量配置优化及经济评价[J].油气储运,2023,42(07):763.[doi:10.6047/j.issn.1000-8241.2023.07.005]
 CHEN Yushan,LI Qi,ZHENG Bo,et al.Capacity allocation optimization and economic evaluation based on wind-solar-hydrogen-storage integrated system[J].Oil & Gas Storage and Transportation,2023,42(08):763.[doi:10.6047/j.issn.1000-8241.2023.07.005]

备注/Memo

白章,男,1987年生,副教授,博士生导师,2016年博士毕业于中国科学院工程热物理研究所工程热物理专业,现主要从事太阳能热化学与多能互补分布式能源系统等的研究工作。地址:山东省青岛市黄岛区长江西路66号,266580。电话:13240284740。Email:baizhang@upc.edu.cn
通信作者:王智,男,1972年生,正高级工程师,1994年毕业于天津大学化学工程专业,现主要从事油气及新能源相关技术的研究工作。地址:山东省东营市东营区济南路49号,257000。电话:18854621667。Email:wngzhi.osec@sinopec.com
基金项目:山东省自然科学基金资助项目“多能互补分布式能源系统”,ZR2022YQ58;中央高校基本科研业务费专项资金“太阳能热化学互补与分布式供能系统”,22CX07006A。
(收稿日期:2023-06-18;修回日期:2023-06-27;编辑:刘朝阳)

更新日期/Last Update: 2023-08-25