网站版权@2014 《油气储运》杂志社 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
[1] HEINEMANN N, ALCALDE J, MIOCIC J M, HANGX S J T, KALLMEYER J, OSTERTAG-HENNING C, et al. Enabling large-scale hydrogen storage in porous media-the scientific challenges[J]. Energy & Environmental Science, 2021, 14(2):853-864. DOI: 10.1039/D0EE03536J.
[2] IEA. The future of hydrogen: seizing today’s opportunities[M]. Vienna:International Energy Agency, 2019: 1-7.
[3] RAZA A, ARIF M, GLATZ G, MAHMOUD M, AL KOBAISI M, ALAFNAN S, et al. A holistic overview of underground hydrogen storage: influencing factors, current understanding, and outlook[J]. Fuel, 2022, 330: 125636. DOI: 10.1016/j.fuel.2022.125636.
[4] TARKOWSKI R, ULIASZ-MISIAK B. Towards underground hydrogen storage: a review of barriers[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112451. DOI: 10.1016/j.rser.2022.112451.
[5] ZIVAR D, KUMAR S, FOROOZESH J. Underground hydrogen storage: a comprehensive review[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23436-23462. DOI: 10.1016/j.ijhydene.2020.08.138.
[6] 付盼,罗淼,夏焱,李国韬,班凡生.氢气地下存储技术现状及难点研究[J].中国井矿盐,2020,51(6):19-23. 10.3969/j.issn.1001-0335.2020.06.008. FU P, LUO M, XIA Y, LI G T, BAN F S. Research on status and difficulties of hydrogen underground storage technology[J]. China Well and Rock Salt, 2020, 51(6): 19-23.
[7] NAVAID H B, EMADI H, WATSON M. A comprehensive literature review on the challenges associated with underground hydrogen storage[J]. International Journal of Hydrogen Energy, 2023, 48(28): 10603-10635. DOI: 10.1016/j.ijhydene.2022.11.225.
[8] HEMATPUR H, ABDOLLAHI R, ROSTAMI S, HAGHIGHI M, BLUNT M J. Review of underground hydrogen storage:concepts and challenges[J]. Advances in Geo-Energy Research, 2023, 7(2): 111-131. DOI: 10.46690/ager.2023.02.05.
[9] 陆佳敏,徐俊辉,王卫东,王浩,徐孜俊,陈留平.大规模地下储氢技术研究展望[J].储能科学与技术,2022,11(11):3699-3707. 10.19799/j.cnki.2095-4239.2022.0297. LU J M, XU J H, WANG W D, WANG H, XU Z J, CHEN L P. Development of large-scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 2022, 11(11): 3699-3707.
[10] 柏明星,宋考平,徐宝成,孙建鹏,冯福平,陈阵,等.氢气地下存储的可行性、局限性及发展前景[J].地质论评,2014,60(4):748-754. 10.16509/j.georeview.2014.04.024. BAI M X, SONG K P, XU B C, SUN J P, FENG F P, CHEN Z, et al. Feasibility, limitation and prospect of H2 underground storage[J]. Geological Review, 2014, 60(4): 748-754.
[11] THIYAGARAJAN S R, EMADI H, HUSSAIN A, PATANGE P, WATSON M. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage[J]. Journal of Energy Storage, 2022, 51: 104490. DOI: 10.1016/j.est.2022.104490.
[12] BECKMAN K L, DETERMEYER P L, MOWREY E H. Natural gas storage: historical development and expected evolution: PB-95-249900/XAB[J]. Houston: International Gas Consulting, Inc., 1995: 249900.
[13] BO Z K, ZENG L P, CHEN Y Q, XIE Q. Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19998-20009. DOI: 10.1016/j.ijhydene.2021.03.116.
[14] HASSANPOURYOUZBAND A, ADIE K, COWEN T, THAYSEN E M, HEINEMANN N, BUTLER I B, et al. Geological hydrogen storage: geochemical reactivity of hydrogen with sandstone reservoirs[J]. ACS Energy Letters, 2022, 7(7):2203-2210. DOI: 10.1021/acsenergylett.2c01024.
[15] THAYSEN E M, MCMAHON S, STROBEL G J, BUTLER I B, NGWENYA B T, HEINEMANN N, et al. Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111481. DOI: 10.1016/j.rser.2021.111481.
[16] DOPFFEL N, JANSEN S, GERRITSE J. Microbial side effects of underground hydrogen storage - knowledge gaps, risks and opportunities for successful implementation[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8594-8606. DOI:10.1016/j.ijhydene.2020.12.058.
[17] EBIGBO A, GOLFIER F, QUINTARD M. A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage[J]. Advances in Water Resources, 2013, 61:74-85. DOI: 10.1016/j.advwatres.2013.09.004.
[18] DORNSEIFFER P, MEYER B, HEINZLE E. Modeling of anaerobic formate kinetics in mixed biofilm culture using dynamic membrane mass spectrometric measurement[J]. Biotechnology and Bioengineering, 1995, 45(3): 219-228. DOI:10.1002/bit.260450306.
[19] MIOCIC J, HEINEMANN N, EDLMANN K, SCAFIDI J, MOLAEI F, ALCALDE J. Underground hydrogen storage: a review[J]. Geological Society, London, Special Publications, 2023, 528(1): SP528-2022-88. DOI: 10.1144/SP528-2022-88.
[20] MUHAMMED N S, HAQ B, AL SHEHRI D, AL-AHMED A, RAHMAN M M, ZAMAN E. A review on underground hydrogen storage: insight into geological sites, influencing factors and future outlook[J]. Energy Reports, 2022, 8: 461-499. DOI:10.1016/j.egyr.2021.12.002.
[21] NAZARY MOGHADAM S, MIRZABOZORG H, NOORZAD A. Modeling time-dependent behavior of gas caverns in rock salt considering creep, dilatancy and failure[J]. Tunnelling and Underground Space Technology, 2013, 33: 171-185. DOI:10.1016/j.tust.2012.10.001.
[22] CARTER N L, HANSEN F D, SENSENY P E. Stress magnitudes in natural rock salt[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B11): 9289-9300. DOI: 10.1029/JB087iB11p09289.
[23] LIANG W G, ZHAO Y S, XU S G, DUSSEAULT M B. Effect of strain rate on the mechanical properties of salt rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 161-167. DOI: 10.1016/j.ijrmms.2010.06.012.
[24] LYU C, LIU J F, REN Y, LIANG C, LIAO Y L. Study on very long-term creep tests and nonlinear creep-damage constitutive model of salt rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 146: 104873. DOI: 10.1016/j.ijrmms. 2021.104873.
[25] 贾晋,王成虎,王璞.枯竭气藏型储气库中地质力学问题浅谈[M]//中国地震局地壳应力研究所.地壳构造与地壳应力文集.北京:地震出版社,2018:116-125. JIA J, WANG C H, WANG P. Discussion on geomechanical problems in exhausted gas reservoir type gas storage[M]//Institute of Crustal Stress, China Earthquake Administration. Collected works on crustal structure and crustal stress. Beijing:Seismological Press, 2018: 116-125.
[26] JEANNE P, ZHANG Y Q, RUTQVIST J. Influence of hysteretic stress path behavior on seal integrity during gas storage operation in a depleted reservoir[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(4): 886-899. DOI: 10.1016/j.jrmge.2020.06.002.
[27] BAI T, TAHMASEBI P. Coupled hydro-mechanical analysis of seasonal underground hydrogen storage in a saline aquifer[J]. Journal of Energy Storage, 2022, 50: 104308. DOI: 10.1016/j.est.2022.104308.
[28] 杨军伟,仲家锐,贾善坡,滕振超,杨典森.含水层储气库注入阶段盖层力学完整性数值模拟分析[J].东北石油大学学报,2021, 45(3):86-98. 10.3969/j.issn.2095-4107.2021.03.009. YANG J W, ZHONG J R, JIA S P, TENG Z C, YANG D S. Numerical simulation analysis of mechanical integrity of caprock during injection stage of aquifer gas reservoir[J]. Journal of Northeast Petroleum University, 2021, 45(3): 86-98.
[29] SANDER R, PAN Z J, CONNELL L D. Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 248-279. DOI: 10.1016/j.jngse.2016.11.041.
[30] ZHONG X Y, ZHU Y S, LIU L P, YANG H M, LI Y F, XIE Y H, et al. The characteristics and influencing factors of permeability stress sensitivity of tight sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 191:107221. DOI: 10.1016/j.petrol.2020.107221.
[31] CHEN T Y, FENG X T, CUI G L, TAN Y L, PAN Z J. Experimental study of permeability change of organic-rich gas shales under high effective stress[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 1-14. DOI: 10.1016/j.jngse. 2019.01.014.
[32] ZHENG J T, ZHENG L G, LIU H H, JU Y. Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 304-318. DOI:10.1016/j.ijrmms.2015.04.025.
[33] HAGEMANN B, RASOULZADEH M, PANFILOV M, GANZER L, REITENBACH V. Mathematical modeling of unstable transport in underground hydrogen storage[J]. Environmental Earth Sciences, 2015, 73(11): 6891-6898. DOI:10.1007/s12665-015-4414-7.
[34] PAN B, YIN X, JU Y, IGLAUER S. Underground hydrogen storage: influencing parameters and future outlook[J]. Advances in Colloid and Interface Science, 2021, 294: 102473. DOI:10.1016/j.cis.2021.102473.
[35] LUBO K, TARKOWSKI R. Influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the deep geological structure[J]. International Journal of Hydrogen Energy, 2021, 46(58):30048-30060. DOI: 10.1016/j.ijhydene.2021.06.119.
[36] CARDEN P O, PATERSON L. Physical, chemical and energy aspects of underground hydrogen storage[J]. International Journal of Hydrogen Energy, 1979, 4(6): 559-569. DOI: 10.1016/0360-3199(79)90083-1.
[37] 刘中云,曾庆辉,唐周怀,张公社.润湿性对采收率及相对渗透率的影响[J].石油与天然气地质,2000,21(2):148-150. 10.3321/j.issn:0253-9985.2000.02.014. LIU Z Y, ZENG Q H, TANG Z H, ZHANG G S. Effect of wettability on recovery and relative permeability[J]. Oil &Gas Geology, 2000, 21(2): 148-150.
[38] PERERA M S A. A review of underground hydrogen storage in depleted gas reservoirs: insights into various rock-fluid interaction mechanisms and their impact on the process integrity[J]. Fuel, 2023, 334(Part 1): 126677. DOI: 10.1016/j.fuel.2022.126677.
[39] AL-YASERI A, ESTEBAN L, GIWELLI A, SAROUT J, LEBEDEV M, SARMADIVALEH M. Initial and residual trapping of hydrogen and nitrogen in Fontainebleau sandstone using nuclear magnetic resonance core flooding[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22482-22494. DOI:10.1016/j.ijhydene.2022.05.059.
[40] AL-YASERI A, JHA N K. On hydrogen wettability of basaltic rock[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108387. DOI: 10.1016/j.petrol.2021.108387.
[41] ALI M, JHA N K, AL-YASERI A, ZHANG Y H, IGLAUER S, SARMADIVALEH M. Hydrogen wettability of quartz substrates exposed to organic acids; Implications for hydrogen geo-storage in sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109081. DOI: 10.1016/j.petrol.2021.109081.
[42] IGLAUER S, ALI M, KESHAVARZ A. Hydrogen wettability of sandstone reservoirs: implications for hydrogen geo-storage[J]. Geophysical Research Letters, 2021, 48(3):e2020GL090814. DOI: 10.1029/2020GL090814.
[43] HOSSEINI M, ALI M, FAHIMPOUR J, KESHAVARZ A, IGLAUER S. Assessment of rock-hydrogen and rock-water interfacial tension in shale, evaporite and basaltic rocks[J]. Journal of Natural Gas Science and Engineering, 2022, 106:104743. DOI: 10.1016/j.jngse.2022.104743.
[44] AL-KHDHEEAWI E A, VIALLE S, BARIFCANI A, SARMADIVALEH M, IGLAUER S. Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity[J]. International Journal of Greenhouse Gas Control, 2017, 58: 142-158. DOI: 10.1016/j.ijggc.2017.01.012.
[45] VAVRA C L, KALDI J G, SNEIDER R M. Geological applications of capillary pressure: a review[J]. AAPG Bulletin, 1992, 76(6): 840-850. DOI: 10.1306/BDFF88F8-1718-11D7-8645000102C1865D.
[46] LUBO K, TARKOWSKI R. Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2068-2083. DOI: 10.1016/j.ijhydene.2019.11.055.
[47] YEKTA A E, MANCEAU J C, GABOREAU S, PICHAVANT M, AUDIGANE P. Determination of hydrogen-water relative permeability and capillary pressure in sandstone:application to underground hydrogen injection in sedimentary formations[J]. Transport in Porous Media, 2018, 122(2):333-356. DOI: 10.1007/s11242-018-1004-7.
[48] HEMME C. Storage of gases in deep geological structures:spatial and temporal hydrogeochemical processes evaluated and predicted by the development and application of numerical modeling[D]. Clausthal-Zellerfeld: Clausthal University of Technology, 2019. DOI: 10.21268/20190613-0.
[49] LORD A S, KOBOS P H, BORNS D J. Geologic storage of hydrogen: scaling up to meet city transportation demands[J]. International Journal of Hydrogen Energy, 2014, 39(28):15570-15582. DOI: 10.1016/j.ijhydene.2014.07.121.
[50] LIU W, CHEN J, JIANG D Y, SHI X L, LI Y P, DAEMEN J J K, et al. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)[J]. Applied Energy, 2016, 178:703-720. DOI: 10.1016/j.apenergy.2016.06.086.
[51] MAHDI D S, AL-KHDHEEAWI E A, YUAN Y J, ZHANG Y H, IGLAUER S. Hydrogen underground storage efficiency in a heterogeneous sandstone reservoir[J]. Advances in Geo-Energy Research, 2021, 5(4): 437-443. DOI: 10.46690/ager.2021.04.08.
[52] CROTOGINO F, HAMELMANN R. Wasserstoff-speicherung in salzkavernen zur gl?ttung des windstromangebots[R]. Hannover: KBB Underground Technologies GmbH, 2007: 1-7.
[53] AL-MUKAINAH H, AL-YASERI A, YEKEEN N, AL HAMAD J, MAHMOUD M. Wettability of shale-brine-H2 system and H2-brine interfacial tension for assessment of the sealing capacities of shale formations during underground hydrogen storage[J]. Energy Reports, 2022, 8: 8830-8843. DOI:10.1016/j.egyr.2022.07.004.
[54] IGLAUER S. Optimum geological storage depths for structural H2 geo-storage[J]. Journal of Petroleum Science and Engineering, 2022, 212: 109498. DOI: 10.1016/j.petrol.2021.109498.
[55] WOLFF-BOENISCH D, ABID H R, TUCEK J E, KESHAVARZ A, IGLAUER S. Importance of clay-H2 interactions for large-scale underground hydrogen storage[J].International Journal of Hydrogen Energy, 2023, 48(37):13934-13942. DOI: 10.1016/j.ijhydene.2022.12.324.
[56] UGARTE E R, SALEHI S. A review on well integrity issues for underground hydrogen storage[J]. Journal of Energy Resources Technology, 2022, 144(4): 042001. DOI: 10.1115/1. 4052626.
[57] AL-YASERI A, YEKEEN N, MAHMOUD M, KAKATI A, XIE Q, GIWELLI A. Thermodynamic characterization of H2-brine-shale wettability: implications for hydrogen storage at subsurface[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22510-22521. DOI: 10.1016/j.ijhydene.2022.05.086.
[58] ALI M, YEKEEN N, PAL N, KESHAVARZ A, IGLAUER S, HOTEIT H. Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock;implications for hydrogen geo-storage[J]. Energy Reports, 2021, 7: 5988-5996. DOI: 10.1016/j.egyr.2021.09.016.
[59] ALI M, YEKEEN N, PAL N, KESHAVARZ A, IGLAUER S, HOTEIT H. Influence of organic molecules on wetting characteristics of mica/H2/brine systems: implications for hydrogen structural trapping capacities[J]. Journal of Colloid and Interface Science, 2022, 608(Part 2): 1739-1749. DOI:10.1016/j.jcis.2021.10.080.
[60] ALI M, PAN B, YEKEEN N, AL-ANSSARI S, AL-ANAZI A, KESHAVARZ A, et al. Assessment of wettability and rock-fluid interfacial tension of caprock: implications for hydrogen and carbon dioxide geo-storage[J]. International Journal of Hydrogen Energy, 2022, 47(30): 14104-14120. DOI: 10.1016/j.ijhydene.2022.02.149.
[61] ALANAZI A, ALI M, MOWAFI M, HOTEIT H. Effect of organics and nanofluids on capillary-sealing efficiency of caprock for hydrogen and carbon-dioxide geological storage[C]. Abu Dhabi: International Geomechanics Symposium, 2022: ARMA-IGS-2022-009.
[62] BENSING J P, MISCH D, SKERBISCH L, SACHSENHOFER R F. Hydrogen-induced calcite dissolution in Amaltheenton Formation claystones: implications for underground hydrogen storage caprock integrity[J]. International Journal of Hydrogen Energy, 2022, 47(71): 30621-30626. DOI: 10.1016/j.ijhydene.2022.07.023.
[63] 姜放,戴海黔,曹小燕,黄红兵.油套管在CO2和H2S共存时的腐蚀机理研究[J].石油与天然气化工,2005,34(3):213-215. 10.3969/j.issn.1007-3426.2005.03.019.JIANG F, DAI H Q, CAO X Y, HUANG H B. The experiment research of a corrosion mechanism about the tube in CO2 and H2S environment[J]. Chemical Engineering of Oil and Gas, 2005, 34(3): 213-215, 148.
[64] 李春福,邓洪达,王斌.高含H2S/CO2环境中套管钢腐蚀行为与腐蚀产物膜关系[J].材料热处理学报,2008,29(1):89-93. LI C F, DENG H D, WANG B. Influence of corrosion scale on corrosion behavior of casing pipe steels in environment containing H2S and CO2[J]. Transactions of Materials and Heat Treatment, 2008, 29(1): 89-93.
[65] 孙建波,苏鑫,张勇.高温高压H2S/CO2腐蚀产物膜对低铬钢氢渗透行为的影响[J].表面技术,2018,47(6):17-23. 10.16490/j.cnki.issn.1001-3660.2018.06.003. SUN J B, SU X, ZHANG Y. Effect of H2S/CO2 corrosion scales on the hydrogen permeation behavior of low Chromium steels[J]. Surface Technology, 2018, 47(6): 17-23.
[66] 丁磊,姚勇,张志远,窦志超.慢应变拉伸法模拟含氢储气库管材的应力腐蚀试验研究[J].钢管,2017,46(5):18-24. 10.3969/j.issn.1001-2311.2017.05.005. DING L, YAO Y, ZHANG Z Y, DOU Z C. Study on SSC test to pipe for hydrogen-containing gas storage service with SSRT simulation method[J]. Steel Pipe, 2017, 46(5): 18-24.
[67] 耿捷,赵永峰. Cr13钢在CO2/H2S环境中腐蚀规律试验研究[J].石油矿场机械,2013,42(11):66-71. 10.3969/j.issn.1001-3482. 2013.11.017. GENG J, ZHAO Y F. Experimental study of corrosion law of Cr13 steel in CO2/H2S corrosion environment[J]. Oil Field Equipment, 2013, 42(11): 66-71.
[68] 张弘,袁光杰,万继方,张施琦,李景翠,刘天恩,等. P110级管材在含氢储气库环境中的腐蚀行为[J].天然气工业,2022, 42(11):117-123. 10.3787/j.issn.1000-0976.2022.11.012. ZHANG H, YUAN G J, WAN J F, ZHANG S Q, LI J C, LIU T E, et al. Corrosion behavior of P110 pipe in the environment of hydrogen-containing gas storage[J]. Natural Gas Industry, 2022, 42(11): 117-123.
[69] GHOSH G, ROSTRON P, GARG R, PANDAY A. Hydrogen induced cracking of pipeline and pressure vessel steels: a review[J]. Engineering Fracture Mechanics, 2018, 199: 609-618. DOI: 10.1016/j.engfracmech.2018.06.018.
[70] 蒋庆梅,张小强.氢气长输管道钢管选材研究[J].油气田地面工程,2016,35(9):1-3. 10.3969/j.issn.1006-6896. 2016.9.001.JIANG Q M, ZHANG X Q. Study on pipe material selection of long distance hydrogen transportation pipeline[J]. Oil-Gas Field Surface Engineering, 2016, 35(9): 1-3.
[71] ZENG L P, SARMADIVALEH M, SAEEDI A, CHEN Y Q, ZHONG Z Q, XIE Q. Storage integrity during underground hydrogen storage in depleted gas reservoirs[J/OL]. Renewable and Sustainable Energy Reviews: 1-79[2023-05-09]. http://dx.doi.org/10.13140/RG.2.2.21039.82083. DOI: 10.13140/RG.2.2.21039.82083.
[72] STRAZISAR B, KUTCHKO B, HUERTA N. Chemical reactions of wellbore cement under CO2 storage conditions:effects of cement additives[J]. Energy Procedia, 2009, 1(1):3603-3607. DOI: 10.1016/j.egypro.2009.02.155.
[73] SANTRA A, REDDY B R, LIANG F, FITZGERALD R. Reaction of CO2 with Portland cement at downhole conditions and the role of pozzolanic supplements[C]. The Woodlands:SPE International Symposium on Oilfield Chemistry, 2009:SPE-121103-MS. DOI: 10.2118/121103-MS.
[74] А·Ф·阿克拉莫维奇,刘春全. H2S对固井材料的腐蚀过程研究[J].西南石油大学学报(自然科学版),2010,32(6):1-4. 10.3863/j.issn.1674-5086.2010.06.001.АКРАМОВИЧ А Ф, LIU C Q. Study on the corrosion process of H2S on cementing materials[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(6): 1-4.
[75] 桂强.水泥基材料气体渗透性研究[D].北京:清华大学,2016. GUI Q. Study on gas permeability of cement-based materials[D]. Beijing: Tsinghua University, 2016.
[76] REITENBACH V, GANZER L, ALBRECHT D, HAGEMANN B. Influence of added hydrogen on underground gas storage: a review of key issues[J]. Environmental Earth Sciences, 2015, 73(11): 6927-6937. DOI: 10.1007/s12665-015-4176-2.
[77] JONES R R, CARPENTER R B. New latex, expanding thixotropic cement systems improve job performance and reduce costs[C]. Anaheim: SPE International Symposium on Oilfield Chemistry, 1991: SPE-21010-MS.
[78] 陈明战.气体快速减压下橡胶破裂失效机理研究[D].大庆:东北石油大学,2021. CHEN M Z. Mechanism research of rubber fracturing failure induced by rapid gas decompression[D]. Daqing: Northeast Petroleum University, 2021.
[79] SALEHI S, EZEAKACHA C P, KWATIA G, AHMED R,TEODORIU C. Performance verification of elastomer materials in corrosive gas and liquid conditions[J]. Polymer Testing, 2019, 75: 48-63. DOI: 10.1016/j.polymertesting.2019.01.015.
[80] CONG C B, CUI C C, MENG X Y, LU S J, ZHOU Q. Degradation of hydrogenated nitrile-butadiene rubber in aqueous solutions of H2S or HCl[J]. Chemical Research in Chinese Universities, 2013, 29(4): 806-810. DOI: 10.1007/s40242-013-2401-7.
[81] PATEL H, SALEHI S, AHMED R, TEODORIU C. Review of elastomer seal assemblies in oil & gas wells: performance evaluation, failure mechanisms, and gaps in industry standards[J]. Journal of Petroleum Science and Engineering, 2019, 179: 1046-1062. DOI: 10.1016/j.petrol.2019.05.019.
[82] ERSHADNIA R, SINGH M, MAHMOODPOUR S, MEYAL A, MOEINI F, HOSSEINI S A, et al. Impact of geological and operational conditions on underground hydrogen storage[J]. International Journal of Hydrogen Energy, 2023, 48(4):1450-1471. DOI: 10.1016/j.ijhydene.2022.09.208.
[83] FLORIS F J T, BUSH M D, CUYPERS M, ROGGERO F, SYVERSVEEN A R. Methods for quantifying the uncertainty of production forecasts: a comparative study[J]. Petroleum Geoscience, 2001, 7(S): 87-96. DOI: 10.1144/petgeo.7.S.S87.
[84] HASSANPOURYOUZBAND A, JOONAKI E, EDLMANN K, HEINEMANN N, YANG J H. Thermodynamic and transport properties of hydrogen containing streams[J]. Scientific Data, 2020, 7(1): 222. DOI: 10.1038/s41597-020-0568-6.
[85] KUNZ O, WAGNER W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004[J]. Journal of Chemical & Engineering Data, 2012, 57(11): 3032-3091. DOI: 10.1021/je300655b.
[86] JAHANBANI M, NICK H M, ALIZADEH KIAPI M R, MAHMOODI A. A site assessment tool for H2 storage in depleted hydrocarbon reservoirs[J/OL]. engrXiv: 1-9[2023-05-09]. https://doi.org/10.31224/osf.io/qnhcw. DOI: 10.31224/osf.io/qnhcw.
[87] PRUESS K, OLDENBURG C M, MORIDIS G J. TOUGH2 user’s guide version 2: LBNL-43134[R]. Berkeley: Lawrence Berkeley National Laboratory, 1999.
[88] TAKU IDE S, JESSEN K, ORR F M, Jr. Storage of CO2 in saline aquifers: effects of gravity, viscous, and capillary forces on amount and timing of trapping[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 481-491. DOI: 10.1016/S1750-5836(07)00091-6.
[89] KANAANI M, SEDAEE B, ASADIAN-PAKFAR M. Role of cushion gas on underground hydrogen storage in depleted oil reservoirs[J]. Journal of Energy Storage, 2022, 45: 103783. DOI: 10.1016/j.est.2021.103783.
[90] FELDMANN F, HAGEMANN B, GANZER L, PANFILOV M. Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages[J]. Environmental Earth Sciences, 2016, 75(16): 1165. DOI: 10.1007/s12665-016-5948-z.
[91] PFEIFFER W T, BAUER S. Subsurface porous media hydrogen storage-scenario development and simulation[J]. Energy Procedia, 2015, 76: 565-572. DOI: 10.1016/j.egypro.2015.07.872.
[92] HEINEMANN N, SCAFIDI J, PICKUP G, THAYSEN E M, HASSANPOURYOUZBAND A, WILKINSON M, et al. Hydrogen storage in saline aquifers: the role of cushion gas for injection and production[J]. International Journal of Hydrogen Energy, 2021, 46(79): 39284-39296. DOI: 10.1016/j.ijhydene.2021.09.174.
[93] SAINZ-GARCIA A, ABARCA E, RUBI V, GRANDIA F. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16657-16666. DOI: 10.1016/j.ijhydene.2017.05.076.
[1]李建君,王立东,刘春,等.金坛盐穴储气库腔体畸变影响因素[J].油气储运,2014,33(3):269.[doi:10.6047/j.issn.1000-8241.2014.03.010]
LI Jianjun,WANG Lidong,LIU Chun,et al.Factors affecting cavities distortion of Jintan Salt Cavern Gas Storage[J].Oil & Gas Storage and Transportation,2014,33(08):269.[doi:10.6047/j.issn.1000-8241.2014.03.010]
[2]史航,曾志华,左雷斌.中缅油气管道澜沧江桥隧工程穿跨越总体设计[J].油气储运,2014,33(10):1034.[doi:10.6047/j.issn.1000-8241.2014.10.002]
SHI Hang,ZENG Zhihua,ZUO Leibin.Overall design of Lantsang bridge and tunnel crossing project for the Myanmar-China Oil and Gas Pipeline[J].Oil & Gas Storage and Transportation,2014,33(08):1034.[doi:10.6047/j.issn.1000-8241.2014.10.002]
刘翠伟,男,1987年生,副教授,2016年博士毕业于中国石油大学(华东)油气储运工程专业,现主要从事天然气及氢气管道安全输送技术研究。地址:山东省青岛市黄岛区长江西路66号,266580。电话:13468286715。Email:20180093@upc.edu.cn
通信作者:李玉星,男,1970年生,教授,博士生导师,国家重点研发计划“氢能技术”重点专项首席专家,1997年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事油气及特殊气体管输技术研究。地址:山东省青岛市黄岛区长江西路66号,266580。电话:13370809333。Email:liyx@upc.edu.cn
基金项目:国家重点研发计划“氢能技术”重点专项课题“中低压纯氢与掺氢燃气管道系统渗氢扩散机理与相容性研究”,2021YFB4001601。
(收稿日期:2023-05-29;修回日期:2023-06-09;编辑:刘朝阳)