网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
为了实现“双碳”战略目标,建设超临界二氧化碳输送管道是发展的必然趋势。系统辨识了超临界二氧化碳管道运行中面临的主要风险,梳理了超临界二氧化碳管道完整性管理各关键环节的技术现状及应用情况,对比了超临界二氧化碳管道与油气管道完整性管理技术的差异性,并指明了超临界二氧化碳管道完整性管理在体系建设、高后果区识别与风险评估、管道内检测、管道缺陷修复中存在的技术难点及攻关方向。建议从体系标准建设、关键技术研发、优化管道管理3个主要方向开展进一步研究,不仅能够扩展油气管道完整性管理范围,还可实现超临界二氧化碳管道与油气管道完整性管理的深度融合,为超临界二氧化碳管道的安全运行提供保障。(图5,表5,参28)
In order to achieve the “dual carbon” strategic goal, it is an inevitable trend of development to construct supercritical carbon dioxide pipelines. Herein, the main risks faced in the operation of supercritical carbon dioxide pipelines were systematically identified. The technical status and application of the key links in the integrity management of supercritical carbon dioxide pipelines were summarized. Meanwhile, the supercritical carbon dioxide pipeline was compared with the oil and gas pipelines in terms of integrity management technology. Besides, the technical difficulties and future research directions of supercritical carbon dioxide pipeline integrity management in system construction, high consequence area identification and risk assessment, inline detection, and pipeline defect repair were pointed out. Finally, it was suggested to conduct further research in the 3 main directions of system standard construction, key technology research and development, and optimized pipeline management, which could expand the integrity management scope of oil and gas pipelines and realize the deep integration of the supercritical carbon dioxide pipeline and the existing oil and gas pipeline in integrity management, thus providing guarantee for the safe operation of the supercritical carbon dioxide pipeline. (5 Figures, 5 Tables, 28 References)
[1] 胡其会,李玉星,张建,俞欣然,王辉,王武昌,等. “双碳”战略下中国CCUS技术现状及发展建议[J].油气储运,2022,41(4):361-371. 10.6047/j.issn.1000-8241.2022.04.001. HU Q H, LI Y X, ZHANG J, YU X R, WANG H, WANG W C, et al. Current status and development suggestions of CCUS technology in China under the “double carbon” strategy[J]. Oil &Gas Storage and Transportation, 2022, 41(4): 361-371.
[2] 刘建武.二氧化碳输送管道工程设计的关键问题[J].油气储运, 2014,33(4):369-373. 10.6047/j.issn.1000-8241.2014.04.006. LIU J W. Key issues related to engineering design of CO2 transportation pipeline[J]. Oil & Gas Storage and Transportation, 2014, 33(4): 369-373.
[3] 李昕.二氧化碳输送管道关键技术研究现状[J].油气储运,2013, 32(4):343-348. 10.6047/j.issn.1000-8241.2013.04.001. LI X. Status of key technology research on carbon dioxide pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(4): 343-348.
[4] 蒋秀,屈定荣,刘小辉.超临界CO2管道输送与安全[J].油气储运, 2013,32(8):809-813. 10.6047/j.issn.1000-8241.2013.08.003. JIANG X, QU D R, LIU X H. Supercritical CO2 pipeline transportation and safety[J]. Oil & Gas Storage and Transportation, 2013, 32(8): 809-813.
[5] 陈朋超,冯文兴,燕冰川.油气管道全生命周期完整性管理体系的构建[J].油气储运,2020,39(1):40-47. 10.6047/j.issn. 1000-8241.2020.01.006. CHEN P C, FENG W X, YAN B C. Construction of full life cycle integrity management system for oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 40-47.
[6] LU H F, MA X, HUANG K, FU L D, AZIMI M. Carbon dioxide transport via pipelines:a systematic review[J]. Journal of Cleaner Production, 2020, 226: 121994. DOI:10.1016/j.jclepro.2020.121994.
[7] NORDHAUS R R, PITLICK E. Carbon dioxide pipeline regulation[J]. Energy Law Journal, 2009, 30: 85-103.
[8] SEEVAM P,BOTROS K K,ROTHWELL B,ENNIS C, MOHITPOUR M.含杂质二氧化碳管道输送[M].赵帅,张建,李清方,刘海丽,陆诗建,刘建武,译.北京:中国石化出版社, 2014:24-88. SEEVAM P, BOTROS K K, ROTHWELL B, ENNIS C, MOHITPOUR M. Pipeline transportation of carbon dioxide containing impurities[M]. ZHAO S, ZHANG J, LI Q F, LIU H L, LU S J, LIU J W, translated. Beijing: China Petrochemical Press, 2014: 24-88.
[9] U.S. Department of Transportation. Pipeline incident flagged files[EB/OL]. (2021-10-17)[2022-03-25]. https://www.phmsa. dot.gov/data-and-statistics/pipeline/pipeline-incident-flagged-files.
[10] VIANELLO C, MOCELLIN P, MACCHIETTO S, MASCHIO G. Risk assessment in a hypothetical network pipeline in UK transporting carbon dioxide[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 515-527. DOI:10.1016/j.jlp.2016.05.004.
[11] BROWN A, EICKHOFF C, REINDERS J E A, RABEN I, SPRUIJT M, NEELE F.IMPACTS: framework for risk assessment of CO2 transport and storage infrastructure[J]. Energy Procedia, 2017, 114: 6501-6513. DOI: 10.1016/j.egypro.2017.03.1786.
[12] WILDAY J, WARDMAN M, JOHNSON M, HAINES M. Hazards from carbon dioxide capture,transport and storage[J]. Process Safety and Environmental Protection, 2011, 89(6):482-491. DOI:10.1016/j.psep.2011.09.002.
[13] MONTIEL H, VÍLCHEZ J A, CASAL J, ARNALDOS J. Mathematical modelling of accidental gas releases[J]. Journal of Hazardous Materials, 1998, 59(2/3): 211-233. DOI: 10.1016/S0304-3894(97)00149-0.
[14] 王天瑜.天然气管道风险分析与安全距离计算方法研究[D].北京:中国矿业大学(北京),2017. WANG T Y. Risk analysis and study on calculation method of safety distances for natural gas pipelines[D]. Beijing: China University of Mining and Technology (Beijing), 2017.
[15] 孙健飞,李岩松,梁永图.输气管道泄漏速率模型研究进展[J]. 油气储运,2020,39(5):512-518. 10.6047/j.issn.1000-8241.2020.05.005. SUN J F, LI Y S, LIANG Y T. Progress of research on leakage rate model of gas pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(5): 512-518.
[16] 冯文兴,王兆芹,程五一.高压输气管道小孔与大孔泄漏模型的比较分析[J].安全与环境工程,2009,16(4):108-110. 10.3969/j.issn.1671-1556.2009.04.030. FENG W X, WANG Z Q, CHENG W Y. Analysis of the nozzle model and hole model associated with high-pressure natural gas pipeline leakage[J]. Safety and Environmental Engineering, 2009, 16(4): 108-110.
[17] 郭晓璐,喻健良,闫兴清,徐鹏,徐双庆.超临界CO2管道泄漏特性研究进展[J].化工学报,2020,71(12):5430-5442. 10.11949/0438-1157.20200453. GUO X L, YU J L, YAN X Q, XU P, XU S Q. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal, 2020, 71(12): 5430-5442.
[18] 鲁寨军,严利果,肖程欢,姚术健.高压CO2管道泄漏的瞬态行为数值研究[J].安全与环境学报,2021,21(2):758-763. 10.13637/j.issn.1009-6094.2020.1363. LU Z J, YAN L G, XIAO C H, YAO S J. Numerical study on the transient behavior of high-pressure CO2 pipeline leakage[J]. Journal of Safety and Environment, 2021, 21(2): 758-763.
[19] 郭焕焕.埋地CO2管道输送泄漏扩散数值模拟[D].西安:西安石油大学,2020. GUO H H. Numerical simulation of leakage and diffusion in buried CO2 pipeline[D]. Xi'an: Xi'an Shiyou University, 2020.
[20] ABAS A Z, NOR A M, SUHOR M F, MAT S A. Non-metallic materials in supercritical CO2 systems[C]. Kuala Lumpur:Offshore Technology Conference-Asia, 2014: OTC-24963-MS. DOI:10.4043/24963-MS.
[21] USTOLIN F, PALTRINIERI N, BERTO F. Loss of integrity of hydrogen technologies: A critical review[J]. International Journal of Hydrogen Energy, 2020, 45(43):23809-23840. DOI: 10.1016/j.ijhydene.2020.06.021.
[22] Alberta, Canada, 2021. Quest carbon capture and storage project:annual reports 2011—2019[R/OL]. [2022-03-25]. https://open. alberta.ca/dataset?q=quest+ccs&sort=score+desc.
[23] BARNETT J, WILKINSON R, KIRKHAM A, ARMSTRONG K. Under pressure operations on dense phase CO2 pipelines:issues for the operator[C]. Calgary: 2014 10th International Pipeline Conference, 2014: V004T08A008.
[24] SLATER S, ANDREWS R, BOOTHBY P, BARNETT J, ARMSTRONG K. Under pressure welding and preheat temperature decay times on carbon dioxide pipelines[C]. Calgary:2014 10th International Pipeline Conference, 2014: V003T07A034.
[25] SLATER S, BARNETT J, BOOTHBY P,ANDREWS R. Under pressure welding on CO2 pipelines: the effect of thermal decay on mechanical properties[C]. Calgary: 2016 11th International Pipeline Conference, 2016: V003T05A046.
[26] SEEVAM P, RACE J, DOWNIE M, BARNETT J, COOPER R. Capturing carbon dioxide: the feasibility of re-using existing pipeline infrastructure to transport anthropogenic CO2[C]. Calgary:2010 8th International Pipeline Conference, 2010: 129-142.
[27] BROWNSORT P A, SCOTT V, HASZELDINE R S. Reducing costs of carbon capture and storage by shared reuse of existing pipeline—case study of a CO2 capture cluster for industry and power in Scotland[J]. International Journal of Greenhouse Gas Control, 2016, 52: 130-138. DOI:10.1016/j.ijggc.2016.06.004.
[28] CARABALLO A C, RABINDRAN P, WINNING I G, CHAHARDEHI A, BRENNAN F. Fracture control strategy for the conversion of oil and gas pipelines to transport CO2[C]. Hanover: 5th Pipeline Technology Conference 2010, 2016: 1-12.
[1]袁海云 梁萌 徐波 刘力铭 宋涛 张茜 杨英.中俄油气贸易通道的战略布局[J].油气储运,2018,37(5):1.
YUAN Haiyun,LIANG Meng,XU Bo,et al.Strategic layout of oil & gas trade routes between China and Russia[J].Oil & Gas Storage and Transportation,2018,37(02):1.
[2]崔巍,杨亮亮,夏荣,等.“一带一路”背景下海上天然气运输通道的安全评价[J].油气储运,2021,40(12):1430.[doi:10.6047/j.issn.1000-8241.2021.12.015]
CUI Wei,YANG Liangliang,XIA Rong,et al.Safety evaluation of offshore gas transport channels along the Belt and Road[J].Oil & Gas Storage and Transportation,2021,40(02):1430.[doi:10.6047/j.issn.1000-8241.2021.12.015]
[3]王军防,矫捷,余红梅,等.基于群体智能优化的原油管道系统能耗优化方法[J].油气储运,2022,41(11):1269.[doi:10.6047/j.issn.1000-8241.2022.11.004]
WANG Junfang,JIAO Jie,YU Hongmei,et al.Optimization method for energy consumption of crude oil pipeline systems based on swarm intelligence optimization[J].Oil & Gas Storage and Transportation,2022,41(02):1269.[doi:10.6047/j.issn.1000-8241.2022.11.004]
[4]孙博 李柏松 李雅娇 郭祥 于丽琴.公平开放条件下LNG接收站业务发展思考[J].油气储运,2023,42(12):1.
SUN Bo,LI Baisong,LI Yajiao,et al.Thoughts on development of LNG receiving terminal business under fair and open conditions[J].Oil & Gas Storage and Transportation,2023,42(02):1.
[5]张也 徐水营 赵洋 王奉生 杨嘉 张博钧 明亮 虞维超.煤制天然气外输管道建设方案优化[J].油气储运,2024,43(10):1.
ZHANG Ye,XU Shuiying,ZHAO Yang,et al.Optimization of coal-based SNG export pipeline construction plan[J].Oil & Gas Storage and Transportation,2024,43(02):1.
张强,男,1986年生,工程师,2014年硕士毕业于中国地质大学(武汉)安全技术及工程专业,现主要从事管道完整性方向的相关研究工作。地址:河北省廊坊市广阳区金光道51号,065000。电话:0316-2072640。Email:zhangqiang14@pipechina.com.cn
基金项目:国家石油天然气管网集团有限公司科学研究与技术开发项目“超临界CO2管道输送技术研究”,SSCC202107。
(收稿日期:2022-04-22;修回日期:2022-11-02;编辑:李在蓉)