[1]许未晴,鲁仰辉,孙晨,等.天然气掺氢输送系统氢脆研究进展[J].油气储运,2022,41(10):1130-1140.[doi:10.6047/j.issn.1000-8241.2022.10.002]
 XU Weiqing,LU Yanghui,SUN Chen,et al.Research progress on hydrogen embrittlement in hydrogen-blended natural gas transportation system[J].Oil & Gas Storage and Transportation,2022,41(10):1130-1140.[doi:10.6047/j.issn.1000-8241.2022.10.002]
点击复制

天然气掺氢输送系统氢脆研究进展

参考文献/References:

[1] 李敬法,苏越,张衡,宇波.掺氢天然气管道输送研究进展[J].天然气工业,2021,41(4):137-152. LI J F, SU Y, ZHANG H, YU B. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4): 137-152.
[2] JIA G W, XU W Q, CAI M L, SHI Y. Micron-sized water spray-cooled quasi-isothermal compression for compressed air energy storage[J]. Experimental Thermal and Fluid Science, 2018, 96: 470-481.
[3] 赵永志,蒙波,陈霖新,王赓,郑津洋,顾超华,等.氢能源的利用现状分析[J].化工进展,2015,34(9):3248-3255. ZHAO Y Z, MENG B, CHEN L X, WANG G, ZHENG J Y, GU C H, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255.
[4] 殷卓成,杨高,刘怀,马青,郝军.氢能储运关键技术研究现状及前景分析[J].现代化工,2021,41(11):53-57. YIN Z C, YANG G, LIU H, MA Q, HAO J. Research status and prospect analysis of key technologies for hydrogen energy storage and transportation[J]. Modern Chemical Industry, 2021, 41(11): 53-57.
[5] 赵永志,张鑫,郑津洋,顾超华,张林.掺氢天然气管道输送安全技术[J].化工机械,2016,43(1):1-7. ZHAO Y Z, ZHANG X, ZHENG J Y, GU C H, ZHANG L. Safety technology for pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Engineering & Machinery, 2016, 43(1): 1-7.
[6] LYNCH F E, MARMARO R W. Special purpose blends of hydrogen and natural gas: United States Patent 5139002[P]. 1992-08-18.
[7] 崔兆雪,田磊,段鹏飞,李璐伶,李玉星,刘翠伟.混氢天然气管道截断阀压降速率阈值设定[J].油气储运,2021,40(11):1293-1298,1313. CUI Z X, TIAN L, DUAN P F, LI L L, LI Y X, LIU C W. Pressure drop rate threshold setting of block valves in hydrogen-blended natural gas pipelines[J]. Oil & Gas Storage and Transportation, 2021, 40(11): 1293-1298, 1313.
[8] 任若轩,游双矫,朱新宇,岳小文,姜振超.天然气掺氢输送技术发展现状及前景[J].油气与新能源,2021,33(4):26-32. REN R X, YOU S J, ZHU X Y, YUE X W, JIANG Z C. Development status and prospects of hydrogen compressed natural gas transportation technology[J]. Petroleum and New Energy, 2021, 33(4): 26-32.
[9] SHI R J, MA Y, WANG Z D, GAO L, YANG X S, QIAO L J, et al. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces[J]. Acta Materialia, 2020, 200: 686-698.
[10] SHI R J, CHEN L, WANG Z D, YANG X S, QIAO L J, PANG X L. Quantitative investigation on deep hydrogen trapping in tempered martensitic steel[J]. Journal of Alloys and Compounds, 2021, 854: 157218.
[11] 周池楼,何默涵,郭晋,李运泉,吴昊,肖舒,等.高压氢环境奥氏体不锈钢焊件氢脆研究进展[J].化工进展,2022,41(2):519-536. ZHOU C L, HE M H, GUO J, LI Y Q, WU H, XIAO S, et al. Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 519-536.
[12] ES-SAID O S, ALCISTO J, GUERRA J, JONES E, DOMINGUEZ A, HAHN M, et al. Effect of cadmium plating thickness on the Charpy impact energy of hydrogen-charged 4340 steel[J]. Journal of Materials Engineering and Performance, 2016, 25(9): 3606-3614.
[13] ZHENG Y Y, ZHANG L, SHI Q Y, ZHOU C S, ZHENG J Y. Effects of hydrogen on the mechanical response of X80 pipeline steel subject to high strain rate tensile tests[J]. Fatigue &Fracture of Engineering Materials & Structures, 2020, 43(4):684-697.
[14] SDANGHI G, MARANZANA G, CELZARD A, FIERRO V. Review of the current technologies and performances of hydrogen compression for stationary and automotive applications[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 150-170.
[15] 徐铁军.天然气管道压缩机组及其在国内的应用与发展[J].油气储运,2011,30(5):321-326. XU T J. Compressor unit and its application and development in inland Nature gas pipelines[J]. Oil & Gas Storage and Transportation, 2011, 30(5): 321-326.
[16] 宋鹏飞,单彤文,李又武,侯建国,王秀林,张丹.天然气管道掺入氢气的影响及技术可行性分析[J].现代化工,2020,40(7):5-10. SONG P F, SHAN T W, LI Y W, HOU J G, WANG X L, ZHANG D. Impact of hydrogen into natural gas grid and technical feasibility analysis[J]. Modern Chemical Industry, 2020, 40(7): 5-10.
[17] 王玮,王秋岩,邓海全,程光旭,李云.天然气管道输送混氢天然气的可行性[J].天然气工业,2020,40(3):130-136. WANG W, WANG Q Y, DENG H Q, CHENG G X, LI Y. Feasibility analysis on the transportation of hydrogen-natural gas mixtures in natural gas pipelines[J]. Natural Gas Industry, 2020, 40(3): 130-136.
[18] 尚娟,鲁仰辉,郑津洋,孙晨,花争立,于文涛,等.掺氢天然气管道输送研究进展和挑战[J].化工进展,2021,40(10):5499-5505. SHANG J, LU Y H, ZHENG J Y, SUN C, HUA Z L, YU W T, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499-5505.
[19] HAESELDONCKX D, D’HAESELEER W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure[J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1381-1386.
[20] 王春光,邓德伟,王永,刘丹,关锰.离心压缩机一级叶轮开裂分析[C].上海:2009年全国失效分析学术会议,2009:244-247. WANG C G, DENG D W, WANG Y, LIU D, GUAN M. Cracking analysis of the first stage impeller of centrifugal compressor[C]. Shanghai: 2009 National Conference on Failure Analysis, 2009: 244-247.
[21] 王超明,胡军,郑茂盛,余历军.腐蚀介质在金属表面扩散行为的分子动力学研究[J].化工机械,2015,42(5):658-661,705. WANG C M, HU J, ZHENG M S, YU L J. Molecular dynamics study of corrosive medium diffusion in metal surface[J]. Chemical Engineering & Machinery, 2015, 42(5): 658-661, 705.
[22] SANCHEZ J, FULLEA J, ANDRADE M C, DE ANDRES P L. Ab initio molecular dynamics simulation of hydrogen diffusion in α-iron[J]. Physical Review B, 2010, 81(13): 132102.
[23] 付雷,单龙,温玉霜,王苹,方洪渊.氢致裂纹中氢压的理论表征及有限元求解方法[J].焊接学报,2019,40(11):8-12,161. FU L, SHAN L, WEN Y S, WANG P, FANG H Y. Theoretical characterization of hydrogen pressure in hydrogen-induced cracks and finite element solution methods[J]. Transactions of the China Welding Institution, 2019, 40(11): 8-12, 161.
[24] SONG H Y, ZHANG L, XIAO M X. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe[J]. Physics Letters A, 2016, 380(48): 4049-4056.
[25] SHANG J, CHEN W F, ZHENG J Y, HUA Z L, ZHANG L, ZHOU C S, et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures[J]. Scripta Materialia, 2020, 189: 67-71.
[26] ZHOU Z R, ZHANG K Y, HONG Y J, ZHU H H, ZHANG W L, HE Y M, et al. The dependence of hydrogen embrittlement on hydrogen transport in selective laser melted 304L stainless steel[J]. International Journal of Hydrogen Energy, 2021, 46(29): 16153-16163.
[27] WANG P Y, LV Z G, ZHENG S Q, QI Y M, WANG J, ZHENG Y J. Tensile and impact properties of X70 pipeline steel exposed to wet H2S environments[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11514-11521.
[28] CIALONE H, HOLBROOK J. Sensitivity of steels to degradation in gaseous hydrogen[M]//RAYMOND L. Hydrogen embrittlement: Prevention and control. Philadelphia:American Society for Testing and Materials, 1988: 134-152.
[29] 蒙波.含氢天然气高压输送管道材料性能劣化及失效后果研究[D].杭州:浙江大学,2016. MENG B. Investigation on material property degradation and failure consequence of the high-pressure natural gas/hydrogen blends pipeline[D]. Hangzhou: Zhejiang University, 2016.
[30] 周静.天然气管线掺混氢气的特性分析[D].抚顺:辽宁石油化工大学,2020. ZHOU J. Characteristic analysis of mixing hydrogen in natural gas pipeline[D]. Fushun: Liaoning Petrochemical University, 2020.
[31] ZHOU C S, FANG B, WANG J, HU S Y, YE B G, HE Y M, et al. Effect of interaction between corrosion film and H2S/CO2 partial pressure ratio on the hydrogen permeation in X80 pipeline steel[J]. Corrosion Engineering, Science and Technology, 2020, 55(5): 392-399.
[32] MENG B, GU C H, ZHANG L, ZHOU C S, LI X Y, ZHAO Y Z, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7404-7412.
[33] 封辉,池强,吉玲康,李鹤,杨坤.管线钢氢脆研究现状及进展[J].腐蚀科学与防护技术,2017,29(3):318-322. FENG H, CHI Q, JI L K, LI H, YANG K. Research and development of hydrogen embrittlement of pipeline steel[J]. Corrosion Science and Protection Technology, 2017, 29(3): 318-322.
[34] MORO I, BRIOTTET L, LEMOINE P, ANDRIEU E, BLANC C, ODEMER G. Hydrogen embrittlement susceptibility of a high strength steel X80[J]. Materials Science and Engineering: A, 2010, 527(27/28): 7252-7260.
[35] 张小强,蒋庆梅.在已建天然气管道中添加氢气管材适应性分析[J].压力容器,2015,32(10):17-22. ZHANG X Q, JIANG Q M. Material adaptive analysis of blending hydrogen into existing nature gas pipeline[J]. Pressure Vessel Technology, 2015, 32(10): 17-22.
[36] 廖倩玉,陈志光.天然气管道掺氢输送安全问题研究现状[J].城市燃气,2021(4):19-26. LIAO Q Y, CHEN Z G. The safety research on blending hydrogen into natural gas pipeline[J]. Urban Gas, 2021(4): 19-26.
[37] FAN Y H, CUI F, LU L, ZHANG B. A nanotwinned austenite stainless steel with high hydrogen embrittlement resistance[J]. Journal of Alloys and Compounds, 2019, 788: 1066-1075.
[38] 陈瑞,郑津洋,徐平,开方明,刘鹏飞.金属材料常温高压氢脆研究进展[J].太阳能学报,2008,29(4):502-508. CHEN R, ZHENG J Y, XU P, KAI F M, LIU P F. Hydrogen embrittlement of metallic materials in high-pressure hydrogen at normal temperature[J]. Acta Energiae Solaris Sinica, 2008, 29(4): 502-508.
[39] BAI Y, TIAN Y Z, GAO S, SHIBATA A, TSUJI N. Hydrogen embrittlement behaviors of ultrafine-grained 22Mn-0.6C austenitic twinning induced plasticity steel[J]. Journal of Materials Research, 2017, 32(24): 4592-4604.
[40] QU W M, GU C H, ZHENG J Y, ZHAO Y Z, HUA Z L. Effect of plastic deformation at room temperature on hydrogen diffusion of S30408[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8751-8758.
[41] PENG H T, TENG A, ZHENG S Q, LUO B W. Investigation of hydrogen embrittlement susceptibility of X80 weld joints by thermal simulation[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 1-11.
[42] 张体明,赵卫民,蒋伟,王永霖,杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J].金属学报,2019, 55(2):258-266. ZHANG T M, ZHAO W M, JIANG W, WANG Y L, YANG M. Numerical simulation of hydrogen diffusion in X80 welded joint under the combined effect of residual stress and microstructure inhomogeneity[J]. Acta Metallurgica Sinica, 2019, 55(2): 258-266.
[43] 李云涛,杜则裕,陶勇寅,熊林玉.国产X70管线钢及其焊缝的氢致裂纹[J].焊接学报,2004,25(5):104-108,134. LI Y T, DU Z Y, TAO Y Y, XIONG L Y. Hydrogen-induced crack of domestic X70 pipeline steels[J]. Transactions of the China Welding Institution, 2004, 25(5): 104-108, 134.
[44] HUANG G, ZHENG J Y, MENG B, HUA Z L, LU Q J, LI X Y, et al. Mechanical properties of X70 welded joint in high-pressure natural gas/hydrogen mixtures[J]. Journal of Materials Engineering and Performance, 2020, 29(3): 1589-1599.
[45] JIANG Y B, LI C N, WANG D P, LIU J C, LI Y Z, DI X J. The mutual effect of hydrogen and cyclic plastic deformation on ductility degradation of X65 reeled-pipeline welded joint[J]. Materials Science and Engineering: A, 2020, 791: 139739.
[46] 刘德林,胡小春,何玉怀,张兵,刘昌奎,姜涛.从失效案例探讨钢制紧固件的氢脆问题[J].材料工程,2011(10):78-83. LIU D L, HU X C, HE Y H, ZHANG B, LIU C K, JIANG T. Hydrogen brittleness fracture of steel fasteners[J]. Journal of Materials Engineering, 2011(10): 78-83.
[47] ABDEL-KARIM R, El-RAGHY S, MEGAHED M, GHAZAL H. Hydrogen embrittlement of AISI 4140 stud bolts[J]. Materials Performance, 2005, 44(9): 50-54.
[48] ZHAO H Y, WANG P, LI J X. Effect of vanadium content on hydrogen embrittlement of 1 400 MPa grade high strength bolt steels[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34983-34997.
[49] 梅申.加氢装置高压控制阀的设计选择[J].仪器仪表用户, 2014,21(6):14-17. MEI S. High-pressure hydrogenation unit control valve design choices[J]. Instrumentation Customer, 2014, 21(6): 14-17.
[50] JIANG T, ZHONG J R, ZHANG X C, WANG W L, GUAN K S. Hydrogen embrittlement induced fracture of 17-4 PH stainless steel valve stem[J]. Engineering Failure Analysis, 2020, 113(5): 104576.
[51] 吴伟阳,乐精华,董霞,康世屏.高压加氢装置阀门的工况要求及技术分析[J].阀门,2006(6):33-37. WU W Y, YUE J H, DONG X, KANG S P. The requirements of high pressure hydrogenation device to valves[J]. Valve, 2006(6): 33-37.
[52] 李永德,李守新,杨振国,柳洋波,戎利建,惠卫军,等.氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J].金属学报, 2008,44(1):64-68. LI Y D, LI S X, YANG Z G, LIU Y B, RONG L J, HUI W J, et al. Influence of hydrogen on ultrahigh cycle fatigue properties of high strength spring steel 50CrV4[J]. Acta Metallurgica Sinica, 2008, 44(1): 64-68.
[53] 郑津洋,马凯,周伟明,胡军,顾超华,花争立.加氢站用高压储氢容器[J].压力容器,2018,35(9):35-42,54. ZHENG J Y, MA K, ZHOU W M, HU J, GU C H, HUA Z L. High-pressure gaseous hydrogen storage vessel for hydrogen refueling station[J]. Pressure Vessel Technology, 2018, 35(9): 35-42, 54.
[54] 余王伟,陈学东,崔军,范志超.成形工艺对奥氏体不锈钢焊接接头超低温冲击韧性影响的试验研究[J]. 压力容器, 2017,34(2):1-7. YU W W, CHEN X D, CUI J, FAN Z C. Influence of plastic deformation on impact toughness of austenitic stainless steel welding joint at ultra-low temperature[J]. Pressure Vessel Technology, 2017, 34(2): 1-7.
[55] 郑津洋,周池楼,徐平,花争立,赵永志,李智远,等.高压氢环境材料耐久性测试装置的研究进展[J]. 太阳能学报,2013, 34(8):1477-1483. ZHENG J Y, ZHOU C L, XU P, HUA Z L, ZHAO Y Z, LI Z Y, et al. R&D of materials testing equipment in high-pressure hydrogen[J]. Acta Energiae Solaris Sinica, 2013, 34(8):1477-1483.
[56] 果冲.不同腐蚀条件下4130X材料疲劳裂纹扩展速率研究及寿命预测[D].北京:北京工业大学,2020. GUO C. Study on fatigue propagation rate of 4130X under different corrosion conditions and life prediction[D]. Beijing:Beijing University of Technology, 2020.
[57] HUA Z L, ZHANG X, ZHENG J Y, GU C H, CUI T C, ZHAO Y Z, et al. Hydrogen-enhanced fatigue life analysis of Cr-Mo steel high-pressure vessels[J]. International Journal of Hydrogen Energy, 2017, 42(6): 12005-12014.
[58] WU Z T, ZHANG K Y, ZHOU C S, ZHOU Z R, ZHANG W L, BAO F, et al. Warm deformation enhances strength and inhibits hydrogen induced fatigue crack growth in metastable 304 and 316 austenitic stainless steels[J]. Materials Science and Engineering: A, 2021, 818: 141415.
[59] 张鑫.高压储氢气瓶用4130X钢氢脆试验研究及裂纹容限评定[D].杭州:浙江大学,2016. ZHANG X. Experimental study on hydrogen embrittlement of 4130X for application of high pressure hydrogen storage and safety assessment of crack tolerance[D]. Hangzhou: Zhejiang University, 2016.
[60] SOMERDAY B P. Technical reference on hydrogen compatibility of materials low-alloy ferritic steels: tempered Fe-Cr-Mo alloys: SAND2005-7595P[R]. Livermore: Sandia National Laboratories, 2005: 1-14.
[61] HUA Z L, ZHANG X, ZHENG J Y, GU C H, CUI T C, ZHAO Y Z, et al. Hydrogen-enhanced fatigue life analysis of Cr-Mo steel high-pressure vessels[J]. International Journal of Hydrogen Energy, 2017, 42(16): 12005-12014.
[62] MA K, PENG W Z, ZHENG J Y, GU C H, ZHANG R M, LIU Y Y, et al. Study on fracture strain of Cr-Mo steel in high pressure hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31501-31509.
[63] LI X G, GONG B M, DENG C V, LI Y Z. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading[J]. Corrosion Science, 2018, 130:241-251.
[64] FAN Y H, ZHANG B, WANG J Q, HAN E H, KE W. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel[J]. Journal of Materials Science &Technology, 2019, 35(10): 2213-2219.
[65] MICHLER T, BERRETH K, NAUMANN J, SATTLER E. Analysis of martensitic transformation in 304 type stainless steels tensile tested in high pressure hydrogen atmosphere by means of XRD and magnetic induction[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3567-3572.
[66] HU H L, ZHAO M J, CHEN S H, RONG L J. Effect of grain boundary character distribution on hydrogen embrittlement in Fe-Ni based alloy[J]. Materials Science and Engineering: A, 2020, 780: 139201.
[67] LI L F, SONG B, CAI Z Y, LIU Z, CUI X K. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel[J]. Materials Science and Engineering: A, 2019, 742: 712-721.
[68] 徐如辉.城市加氢站布局规划及其安全评价研究[D].济南:山东建筑大学,2019. XU R H. Study on the layout planning and safety evaluation of urban hydrogen refueling station[D]. Jinan: Shandong Jianzhu University, 2019.
[69] SHI R J, WANG Z D, QIAO L J, PANG X L. Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel[J]. International Journal of Minerals Metallurgy and Materials, 2021, 28(4):644-656.
[70] 陈石义,龙海洋,李天雷,廖勇,刘武.天然气管道掺氢探讨[J].天然气与石油,2020,38(6):22-26. CHEN S Y, LONG H Y, LI T L, LIAO Y, LIU W. Discussion on blending hydrogen into natural gas pipeline networks[J]. Natural Gas and Oil, 2020, 38(6): 22-26.
[71] WOJTOWICZ R. An analysis of the effects of hydrogen addition to natural gas on the work of gas appliances[J]. Nafta-Gaz, 2019(8): 465-473.
[72] ISAAC T. HyDeploy: the UK’s first hydrogen blending deployment project[J]. Clean Energy, 2019, 3(2): 114-125.

相似文献/References:

[1]商同林,张树华.旋转容积式流量计在天然气计量中的应用[J].油气储运,2011,30(01):63.[doi:10.6047/j.issn.1000-8241.2011.01.017]
 Shang Tonglin and Zhang Shuhua.The application of rotational positive displacement flowmeter in natural gas metering[J].Oil & Gas Storage and Transportation,2011,30(10):63.[doi:10.6047/j.issn.1000-8241.2011.01.017]
[2]王玮,张晓萍,李明,等.管输天然气气质的相特性[J].油气储运,2011,30(06):423.[doi:10.6047/j.issn.1000-8241.2011.06.005]
 Wang Wei,Zhang Xiaoping,Li Ming,et al.Investigation on phase behavior of the pipelining natural gas[J].Oil & Gas Storage and Transportation,2011,30(10):423.[doi:10.6047/j.issn.1000-8241.2011.06.005]
[3]陈晓源,谭羽非.地下储气库天然气泄漏损耗与动态监测判定[J].油气储运,2011,30(07):513.[doi:10.6047/j.issn.1000-8241.2011.07.009]
 Chen Xiaoyuan and Tan Yufei.Gas leak loss and dynamic monitoring determination of underground gas storage[J].Oil & Gas Storage and Transportation,2011,30(10):513.[doi:10.6047/j.issn.1000-8241.2011.07.009]
[4]袁献忠,薛光,黄明军,等.天然气分输站的计量调压设计[J].油气储运,2011,30(07):528.[doi:10.6047/j.issn.1000-8241.2011.07.013]
 Yuan Xianzhong,Xue Guang,Huang Mingjun,et al.Metering and pressure regulating design of gas offtake station[J].Oil & Gas Storage and Transportation,2011,30(10):528.[doi:10.6047/j.issn.1000-8241.2011.07.013]
[5]肖伟生,林敏,刘骁.天然气涡轮流量计的应用与故障分析[J].油气储运,2011,30(07):536.[doi:10.6047/j.issn.1000-8241.2011.07.017]
 Xiao Weisheng,Lin Ming,Liu Xiao.Application of turbine flowmeter and failure analysis[J].Oil & Gas Storage and Transportation,2011,30(10):536.[doi:10.6047/j.issn.1000-8241.2011.07.017]
[6]王鹏,杜梦溪,匡远奇,等.北京油气调控中心运营水平测评体系[J].油气储运,2011,30(07):539.[doi:10.6047/j.issn.1000-8241.2011.07.018]
 Wang Peng,Du Mengxi,Kuang Yuanqi,et al.Assessment system of operation level for PetroChina Oil & Gas Pipeline Control Center of Beijing[J].Oil & Gas Storage and Transportation,2011,30(10):539.[doi:10.6047/j.issn.1000-8241.2011.07.018]
[7]潘家华.我国天然气管道工业发展前景预测[J].油气储运,2011,30(08):601.[doi:10.6047/j.issn.1000-8241.2011.08.001]
 Pan Jiahua.Prospect prediction of domestic natural gas pipeline industry[J].Oil & Gas Storage and Transportation,2011,30(10):601.[doi:10.6047/j.issn.1000-8241.2011.08.001]
[8]陈武新,赵刚.调节阀高频噪声对超声波计量的影响与对策[J].油气储运,2011,30(09):715.[doi:10.6047/j.issn.1000-8241.2011.09.021]
 Chen Wuxin and Zhao Gang.The impact of high frequency noise of regulating valve on ultrasonic metering and solution[J].Oil & Gas Storage and Transportation,2011,30(10):715.[doi:10.6047/j.issn.1000-8241.2011.09.021]
[9]杨义,孙慧,王梅.我国城市燃气发展现状与展望[J].油气储运,2011,30(10):725.[doi:10.6047/j.issn.1000-8241.2011.10.002]
 Yang Yi,Sun Hui,Wang Mei.Current situation and prospect of urban gas in China[J].Oil & Gas Storage and Transportation,2011,30(10):725.[doi:10.6047/j.issn.1000-8241.2011.10.002]
[10]蒋辉 林媛媛 曹斯亮.天然气超声波计量系统性能的影响因素[J].油气储运,2012,31(1):53.[doi:10.6047/j.issn.1000-8241.2012.01.014]
 Jiang Hui,Lin Yuanyuan,Cao Siliang.Influence factors of gas ultrasonic metering system’s performance[J].Oil & Gas Storage and Transportation,2012,31(10):53.[doi:10.6047/j.issn.1000-8241.2012.01.014]

备注/Memo

许未晴,男,1984年生,副研究员,2013年博士毕业于北京航空航天大学机械电子工程专业,现主要从事氢气产-储-运过程的热物理特性、测量控制及能量转化方面的研究工作。地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院,100191。电话:15810239037。Email:weiqing.xu@buaa.edu.cn
基金项目:国家自然科学基金资助项目“压缩空气储能高效等温压缩方法的研究”,51875012;中国博士后科学基金资助项目“新型等温活塞的空气压缩方法及应用研究”,2021M701096;北京高校卓越青年科学家计划项目,BJJWZYJH01201910006021。
(收稿日期:2021-12-06;修回日期:2022-03-18;编辑:李在蓉)

更新日期/Last Update: 2022-10-25