[1]滕霖,尹鹏博,聂超飞,等.“氨-氢”绿色能源路线及液氨储运技术研究进展[J].油气储运,2022,41(10):1115-1129.[doi:10.6047/j.issn.1000-8241.2022.10.001]
 TENG Lin,YIN Pengbo,NIE Chaofei,et al.Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J].Oil & Gas Storage and Transportation,2022,41(10):1115-1129.[doi:10.6047/j.issn.1000-8241.2022.10.001]
点击复制

“氨-氢”绿色能源路线及液氨储运技术研究进展

参考文献/References:

[1] JIANG L L, FU X Z. An ammonia-hydrogen energy roadmap for carbon neutrality: opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691.
[2] 袁素.氨能:2022年的能源新风口?[J].能源评论,2022(2):YUAN S. Ammonia energy: a new energy vent in 2022?[J]. Energy Review, 2022(2): 72-75. 72-75.
[3] 迪克里斯蒂娜,迈耶森. 2021年全球十大新兴技术[J].环球科学,2022(1):24-26. DICHRISTINA M, MEYERSON B S. Top 10 emerging technologies 2021[J]. Scientific American, 2022(1): 24-26.
[4] SERVICE R F. Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon[EB/OL]. (2018-07-12)[2022-08-09]. https://www.science.org/content/article/ammonia-renewable-fuel-made-sun-air-and-water-could-power-globe-without-carbon.
[5] SURYANTO B H R, MATUSZEK K, CHOI J, HODGETTS R Y, DU H L, BAKKER J M, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191.
[6] LI L L, JIANG Y F, ZHANG T H, CAI H F, ZHOU Y L, LIN B Y, et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters[J]. Chem, 2022, 8(3): 749-768.
[7] SALMON N, BANARES-ALCANTARA R. Green ammonia as a spatial energy vector: a review[J]. Sustainable Energy & Fuels, 2021, 5(11): 2814-2839.
[8] ARNAIZ DEL POZO C, CLOETE S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future[J]. Energy Conversion and Management, 2022, 255: 115312.
[9] LIPPMANN D G. Evaluation of risks related to the transport of anhydrous ammonia and their mitigation by localized small scale production[C]. Chicago: AIChE Ammonia Safety Symposium, 2021: 13-27.
[10] LIN L, TIAN Y, SU W B, LUO Y, CHEN C Q, JIANG J L. Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia:hybrid hydrogen purification with both high H2 purity and high recovery[J]. Sustainable Energy & Fuels, 2020, 4(6): 3006-3017.
[11] LIM D K, PLYMILL A B, PAIK H, QIAN X, ZECEVIC S, CHISHOLM C R I, et al. Solid acid electrochemical cell for the production of hydrogen from ammonia[J]. Joule, 2020, 4(11):2338-2347.
[12] ZHANG F Y, CHEN G, WU D W, LI T, ZHANG Z F, WANG N. Characterising premixed ammonia and hydrogen combustion for a novel linear Joule engine generator[J]. International Journal of Hydrogen Energy, 2021, 46(44): 23075-23090.
[13] KURATA O, IKI N, FAN Y, MATSUNUMA T, INOUE T, TSUJIMURA T, et al. Start-up process of 50 kW-class gas turbine firing ammonia gas[C]. Virtual: ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, 2021: V006T19A012.
[14] DOLAN R H, ANDERSON J E, WALLINGTON T J. Outlook for ammonia as a sustainable transportation fuel[J]. Sustainable Energy & Fuels, 2021, 5(19): 4830-4841.
[15] YEO S J, KIM J, LEE W J. Potential economic and environmental advantages of liquid petroleum gas as a marine fuel through analysis of registered ships in South Korea[J]. Journal of Cleaner Production, 2022, 330: 129955.
[16] GALLUCCI M. The ammonia solution: ammonia engines and fuel cells in cargo ships could slash their carbon emissions[J]. IEEE Spectrum, 2021, 58(3): 44-50.
[17] AYVALI T, EDMAN TSANG S C, VAN VRIJALDENHOVEN T. The position of ammonia in decarbonising maritime industry:an overview and perspectives: part I: technological advantages and the momentum towards ammonia-propelled shipping[J]. Johnson Matthey Technology Review, 2021, 65(2): 275-290.
[18] 谢易奇.绿氢应用于甲醇和合成氨工业的情景和路径[C].上海:2021势银氢能与燃料电池产业年会,2021:1-24. XIE Y Q. Scenario and path of green hydrogen application in methanol and synthetic ammonia industry[C]. Shanghai: 2021 TrendBank Hydrogen Energy & Fuel Cell Annual Conference, 2021: 1-24.
[19] KOJIMA Y, YAMAGUCHI M. Ammonia as a hydrogen energy carrier[J]. International Journal of Hydrogen Energy, 2022, 47(54): 22832-22839.
[20] 王思佳.零碳航运——氨燃料大有作为[J].中国船检,2021(8):80-84. WANG S J. Zero carbon shipping—ammonia fuel has great potential[J]. China Ship Survey, 2021(8): 80-84.
[21] Black & Veatch. Hybrid LNG & ammonia infrastructure: key to a green economy[M]. Kansas City: EPC firm Black & Veatch, 2020: 1-30.
[22] 中国氢能源及燃料电池产业创新战略联盟.中国氢能源及燃料电池产业白皮书[M].北京:人民日报出版社,2020:1-50. National Alliance of Hydrogen and Fuel Cell. White paper of hydrogen energy and fuel cell industry in China 2020[M]. Beijing: People’s Daily Press, 2020: 1-50.
[23] LIN L, ZHANG L X, LUO Y, LUO J C, CHEN C Q, JIANG L L. Highly-integrated and cost-efficient ammonia-fueled fuel cell system for efficient power generation: a comprehensive system optimization and techno-economic analysis[J]. Energy Conversion and Management, 2022, 251: 114917.
[24] HALE C C, LICHTENBERG W H. U.S. anhydrous ammonia distribution system in transition[J]. Ammonia Plant Safety and Related Facilities, 1988, 28: 76-90.
[25] BILIAIEV M M, AMELINA L V, KHARYTONOV M M. Numerical simulation of the atmosphere pollution after accident at the“Tolliaty–Odessa” ammonia pipe[M]//STEYN D G, BUILTJES P J H, TIMMERMANS R M A. Air pollution modeling and its application XXII. Dordrecht: Springer, 2014: 391-395.
[26] Fertilizers Europe. Guidance for inspection of and leak detection in liquid ammonia pipelines[M]. Brussels: Fertilizers Europe, 2008: 1-7.
[27] 陈文艳.液氨长输管道泄漏风险分析及对策研究[D].北京:首都经济贸易大学,2011. CHEN W Y. Risk analysis and countermeasures of leakage in long-distance liquid ammonia pipeline[D]. Beijing: Capital University of Economics and Business, 2011.
[28] 陈洪林.雏议我国第一条长输液氨管道的设计[J].氮肥设计, 1996,34(3):37-40. CHEN H L. A rustic opinion on the design of the state’s first long pipeline of liquid ammonia[J]. Chemical Fertilizer Design, 1996, 34(3): 37-40.
[29] POLING B E, PRAUSNITZ J M, O’CONNELL J P. The properties of gases and liquids[M]. 5th ed. New York: McGraw-Hill, 2001: 8-11.
[30] PETUKHOV A N, SHABLYKIN D N, VOROTYNTSEV A V, VOROTYNTSEV I V, VOROTYNTSEV V M. Effects of association with impurities in ammonia purification[J]. Fluid Phase Equilibria, 2015, 406: 163-167.
[31] MAAREFIAN M, BANDEHALI S, AZAMI S, SANAEEPUR H, MOGHADASSI A. Hydrogen recovery from ammonia purge gas by a membrane separator: A simulation study[J]. International Journal of Energy Research, 2019(14): 8217-8229.
[32] Anon. Ammonia refrigeration piping handbook[M]. Arlington:International Institute of Ammonia Refrigeration, 2004:1-8.
[33] ILERI A, KESIM S C. Optimum pipe sizes for cooling systems[C]. Izmir: IV. National Testing Engineering Congress and Series, 1999: 529-543.
[34] GEZERMAN A O. Industrial scale ammonia pipeline transfer system and exergy analysis[J]. Kemija u Industriji, 2021, 70(11/12): 711-716.
[35] 应洁,门吉,孙亚超,王春海.液氨长距离管道输送的设计实践[J].煤气与热力,2011,31(4):6-7,10. YING J, MEN J, SUN Y C, WANG C H. Design practice of long-distance pipeline transportation of liquid ammonia[J]. Gas & Heat, 2011, 31(4): 6-7, 10.
[36] 马怀振.液氨地下长输管线的设计与清管方式[J].化肥设计, 2013,51(6):38-40. MA H Z. Design for underground long distance transfering pipeline of liquid ammonia and its pipeline cleaning mode[J]. Chemical Fertilizer Design, 2013, 51(6): 38-40.
[37] 陈鸿林.对长输液氨管道设计的建议[J].化肥设计,2002, 40(5):22-24. CHEN H L. Suggestions of the long-distance piping design for transporting liquid ammonia[J]. Chemical Fertilizer Design, 2002, 40(5): 22-24.
[38] 刘加洪.液氨长输管道安全运行过程探讨[J].化肥设计,2018, 56(1):30-33. LIU J H. Discussion on the safe delivery of long-distance pipelines of liquid ammonia[J]. Chemical Fertilizer Design, 2018, 56(1): 30-33.
[39] FECKE M, GARNER S, COX B. Review of global regulations for anhydrous ammonia production, use, and storage[C]. Edinburgh: IChemE Safety Symposium 2016, 2016: 1-11.
[40] 陈鸿林,刘曙光.无须常规维修的长输液氨管道的设计和管理[J].化肥设计,2001,39(2):25-27. CHEN H L, LIU S G. Design and management of the long-distance piping for transporting liquid ammonia without routine maintenance[J]. Chemical Fertilizer Design, 2001, 39(2):25-27.
[41] SEO Y, HAN S. Economic evaluation of an ammonia-fueled ammonia carrier depending on methods of ammonia fuel storage[J]. Energies, 2021, 14(24): 8326.
[42] 王月姑,吴崇君,郑淞生,陈锦,何嵩,王兆林.氨燃料缓解能源安全及替代天然气的可行性分析[J].可再生能源,2019,37(7):949-954. WANG Y G, WU C J, ZHENG S S, CHEN J, HE S, WANG Z L. Feasibility analysis of ammonia energy to relieve energy security and replace natural gas[J]. Renewable Energy Resources, 2019, 37(7): 949-954.
[43] BICER Y, DINCER I, ZAMFIRESCU C, VEZINA G, RASO F. Comparative life cycle assessment of various ammonia production methods[J]. Journal of Cleaner Production, 2016, 135: 1379-1395.
[44] 梁旭.在用液氨管道保冷层下局部腐蚀现象研究[J].中国特种设备安全,2017,33(8):72-77,80. LIANG X. Study on local corrosion of in-service liquid ammonia pipeline under cold keeping layer[J]. China Special Equipment Safety, 2017, 33(8): 72-77, 80.
[45] 屈建海,冯继伟,莫显跃,陈辉.液氨输送新技术的研究与应用[J].河南化工,2015,32(6):36-37. QU J H, FENG J W, MO X Y, CHEN H. Research and application of new liquid ammonia transportation technology[J]. Henan Chemical Industry, 2015, 32(6): 36-37.
[46] YAN H W, KOU Z M, WU J, WANG X H. Based on risk source pipe leakage emergency device and sealing method research[J]. Advanced Materials Research, 2011, 287: 2834-2839.
[47] 杨一凡.氨制冷技术的应用现状及发展趋势[J].制冷学报, 2007,28(4):12-19. YANG Y F. Application and development of ammonia refrigeration technology[J]. Journal of Refrigeration, 2007, 28(4): 12-19.
[48] 张景钢.危险化学品泄漏扩散模拟的研究[D].青岛:山东科技大学,2006. ZHANG J G. Study of leakage and diffusion simulation of hazard chemical substance[D]. Qingdao: Shandong University of Science and Technology, 2006.
[49] CHEN S N, SUN J H, CHU G Q. Small scale experiments on boiling liquid expanding vapor explosions: Vessel over-pressure[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(1): 45-51.
[50] LI S X, LIU L P, FAN T J, CAO H. Environmental diffusion analysis and consequence prediction of liquefied ammonia leakage accident[J]. Journal of Applied Sciences, 2013, 13(12):2131-2138.
[51] 滕霖,白金宝,刘斌.用于危化品泄漏及防护的风洞试验平台的搭建[J].实验技术与管理,2021,38(11):298-302. TENG L, BAI J B, LIU B. Construction of wind tunnel test platform for protection and leakage of hazardous chemicals[J].Experimental Technology and Management, 2021, 38(11): 298-302.
[52] MICHIOKA T, SATO A, SADA K. Large-eddy simulation coupled to mesoscale meteorological model for gas dispersion in an urban district[J]. Atmospheric Environment, 2013, 75: 153-162.
[53] HUA M, QI M, YUE T T, PI X Y, PAN X H, JIANG J C. Experimental research on water curtain scavenging ammonia dispersion in confined space[J]. Procedia Engineering, 2018, 211: 256-261.
[54] DANDRIEUX-BONY A, DIMBOUR J P, DUSSERRE G. A simple model for calculating chlorine concentrations behind a water spray in case of small releases[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(4/5/6): 245-253.
[55] RANA M A, MANNAN M S. Forced dispersion of LNG vapor with water curtain[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 768-772.
[56] DANDRIEUX A, DUSSERRE G, OLLIVIER J. Small scale field experiments of Chlorine dispersion[J]. Journal of Loss Prevention in the Process Industries, 2002, 15(1): 5-10.
[57] 齐敏,乐涛涛,华敏,潘旭海.受限空间水幕稀释阻挡重气扩散实验研究[J].消防科学与技术,2015,34(10):1364-1371. QI M, LE T T, HUA M, PAN X H. Experiment on water curtain diluting and obstructing the dispersion of heavy gas in confined space[J]. Fire Science and Technology, 2015, 34(10): 1364-1371.
[58] 方珊珊,华敏,皮晓玥,胡引,陈园,耿媛颖,等.水幕阻挡有毒有害气体扩散的实验研究[J].化学工程,2014,42(9):42-47. FANG S S, HUA M, PI X Y, HU Y, CHEN Y, GENG Y Y, et al. Experimental research on water curtain mitigating toxic gases dispersion[J]. Chemical Engineering, 2014, 42(9): 42-47.
[59] 倪小敏,蔡昕,肖修昆,金翔,廖光煊.含酸性添加剂的细水雾洗消氨气的性能研究[J].环境科学与管理,2008,33(12):98-101. NI X M, CAI X, XIAO X K, JIN X, LIAO G X. Study on the decontamination efficiency of water mist containing acidic additives[J]. Environmental Science and Management, 2008, 33(12): 98-101.
[60] 沈晓辉,张娟,华敏,潘旭海.含无机盐添加剂水幕对氨气泄漏洗消试验研究[J].安全与环境学报,2017,17(6):2200-2205. SHEN X H, ZHANG J, HUA M, PAN X H. Experimental test for the decontamination effect of the water curtain with inorganic salts on the release of ammonia[J]. Journal of Safety and Environment, 2017, 17(6): 2200-2205.
[61] KIM B K, MENTZER R A, MANNAN M S. Numerical study on physical mechanisms of forced dispersion for an effective LNG spill mitigation[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9488-9498.
[62] GALEEV A D, STAROVOYTOVA E V, PONIKAROV S I. Numerical simulation of the consequences of liquefied ammonia instantaneous release using FLUENT software[J]. Process Safety and Environmental Protection, 2013, 91(3): 191-201.
[63] MIN D S, CHOI S, OH E Y, LEE J, LEE C G, CHOI K Y, et al. Numerical modelling for effect of water curtain in mitigating toxic gas release[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103972.
[64] BECKER A T, RUSSELL A M, CHUMBLEY L S. Predicted growth of through-thickness stress corrosion cracks in anhydrous ammonia nurse tanks[J]. Advanced Materials Letters, 2015, 6(9) : 783-789.
[65] LUNDE L, NYBORG R. Stress corrosion cracking of different steels in liquid and vaporous ammonia[J]. Corrosion, 1987, 43(11): 680-686.
[66] DEEGAN D C, WILDE B E. Stress corrosion cracking behavior of ASTM A517 grade F steel in liquid ammonia environments[J]. Corrosion, 1973, 29(8): 310-315.
[67] NAKAI Y, UESUGI Y, KURAHASHI H. Stress corrosion cracking of steel in liquid ammonia[J]. Tetsu-To-Hagane, 1981, 67(14): 2234-2241.
[68] 刘天佐.液氨管道不锈钢三通开裂失效分析[J].中国科技纵横,2017(12):72-74. LIU T Z. Cracking failure analysis of stainless steel tee in liquid ammonia pipeline[J]. China Science & Technology Panorama Magazine, 2017(12): 72-74.
[69] 江军,唐懿,张勇,杨建国,黄仲婴,朱广模.制冷压力容器用材在液氨中应力腐蚀研究[J].制冷与空调,2003,3(5):32-36. JIANG J, TANG Y, ZHANG Y, YANG J G, HUANG Z Y, ZHU G M. Research on stress corrosion of the materials for refrigerating pressure vessel in liquid ammonia[J]. Refrigeration and Air Conditioning, 2003, 3(5): 32-36.
[70] 贝赫特.工艺管道ASME B31.3实用指南[M].陈登丰,秦叔经,等译.第2版.北京:化学工业出版社,2006:1-9. BECHT C I V. Process piping the complete guide to ASME B31.3[M]. Translated by CHEN D F, QIN S J, et al. 2nd ed. Beijing: Chemical Industry Press, 2006: 1-9.
[71] 何茂林,梁政,李永生. GB/T 9711材料屈服极限和压力使用范围的探讨[J].天然气工业,2010,30(4):116-119. HE M L, LIANG Z, LI Y S. Discussion on the yield limit and bearing stress range of materials in the GB/T 9711[J]. Natural Gas Industry, 2010, 30(4): 116-119.
[72] 奚运涛,崔熙,张万里,刘君,冉照辉.基于多路超声回波特性的在线腐蚀监测技术[J]. 西安石油大学学报(自然科学版), 2021,36(3):121-126. XI Y T, CUI X, ZHANG W L, LIU J, RAN Z H. On-line corrosion monitoring technology based on multi-channel ultrasonic echo characteristics[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36(3): 121-126.
[73] 谢飞,李佳航,王国付,王新强,郭大成,姜锦涛.天然气管道内腐蚀直接评价方法的改进[J].油气储运,2022,41(2):219-226. XIE F, LI J H, WANG G F, WANG X Q, GUO D C, JIANG J T. An improvement on direct assessment method for internal corrosion of natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2022, 41(2): 219-226.
[74] 冷建成,钱万东,周临风.基于应力监测的油气管道安全预警试验研究[J].石油机械,2021,49(6):139-144. LENG J C, QIAN W D, ZHOU L F. Experimental study on safety warning of oil and gas pipeline based on stress monitoring[J]. China Petroleum Machinery, 2021, 49(6): 139-144.
[75] 孙齐,李凤,王一玮,董绍华,陈林,张行.掺氢天然气管道泄漏扩散规律及监测探头布设方案[J].油气储运,2022,41(8):916-923. SUN Q, LI F, WANG Y W, DONG S H, CHEN L, ZHANG X. Leakage diffusion law of hydrogen-mixed natural gas pipeline and layout plan of detectors[J]. Oil & Gas Storage and Transportation, 2022, 41(8): 916-923.

备注/Memo

滕霖,男,1991年生,副研究员,2019年博士毕业于中国石油大学(华东)油气储运工程专业,现主要从事新能源储运相关技术的研究工作。地址:福建省福州市福州大学城乌龙江北大道2号,350108。电话:18266635171。Email:tenglin@fzu.edu.cn
基金项目:国家重点研发计划“氢能技术”专项资助项目“高效热化学合成氨催化剂的创制及其批量制备技术”,2021YFB4000403;国家自然科学基金重点项目“基于缔合加氢机理的高性能亚纳米Ru基合成氨催化剂设计制备及应用基础研究”,22038002;福建省科技厅重大专项专题“可再生能源与‘氨氢能源’互补的新型分布式能源系统关键技术及集成验证”,2020HZ07009。
(收稿日期:2022-08-09;修回日期:2022-08-29;编辑:刘朝阳)

更新日期/Last Update: 2022-10-25