网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
为探究掺氢导致的天然气泄漏行为变化,实现掺氢混合气体泄漏的快速检测,采用Fluent软件建立特定半封闭场所的平面泄漏模型,研究掺氢天然气在不同风速下的扩散情况及不同掺氢体积分数下的动态发展规律。结果表明:风速增大会阻碍掺氢天然气向上扩散,同时加速气体在水平方向的积累,而掺氢体积分数增大会使气体扩散高度降低,且使扩散高度增速减缓。根据相关标准和不同掺氢体积分数天然气扩散达到其爆炸下限所在高度的仿真结果,提出掺氢天然气管道在半封闭空间场景下的可燃气体监测探头布设方案,以确保泄漏发生后能够及时作出应急响应,保障管道安全运行。(图8,参26)
In order to study the change of gas leakage behavior caused by hydrogen mixing and rapidly realize the leakage detection of hydrogen-mixed gas, a plane leakage model for specific semi-closed places was established with the Fluent software, and thereby, the diffusion of hydrogen-mixed natural gas at different wind speeds and the dynamic development law at different volume fraction of mixed hydrogen were explored. The research results show that: the increase of wind speed will prevent the hydrogen-mixed natural gas from upward diffusion and accelerate the gas accumulation in the horizontal direction, while the increasing volume fraction of mixed hydrogen will reduce the gas diffusion height and slow down the growth of diffusion height. According to the relevant standards and the simulation results of height at which natural gas with different volume fractions of mixed hydrogen diffuses to its lower limit of explosion, the layout plan of flammable gas detectors of hydrogen-mixed natural gas pipeline in the semi-closed space scenario was proposed to ensure that emergent response could be provided immediately after leakage, thus assuring the safe operation of pipelines. (8 Figures, 26 References)
[1] ZOU C N, XIONG B, XUE H Q, ZHENG D W, GE Z X, WANG Y, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 480-491.
[2] 李敬法,苏越,张衡,宇波.掺氢天然气管道输送研究进展[J].天然气工业,2021,41(4):137-152. LI J F, SU Y, ZHANG H, YU B. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4): 137-152.
[3] 赵青,郑佳.全球主要国家2019年氢能发展政策概述[J].全球科技经济瞭望,2020,35(4):11-20. ZHAO Q, ZHENG J. Overview of hydrogen development policies of major global countries in 2019[J]. Global Science, Technology and Economy Outlook, 2020, 35(4): 11-20.
[4] 罗佐县,曹勇.氢能产业发展前景及其在中国的发展路径研究[J].中外能源,2020,25(2):9-15. LUO Z X, CAO Y. Development prospect of hydrogen energy industry and its development path in China[J]. Sino-Global Energy, 2020, 25(2): 9-15.
[5] 陈伟锋,尚娟,邢百汇,魏皓天,顾超华,花争立.关于天然气管网安全掺氢比10%的商榷[J].化工进展,2022,41(3):1487-1493. CHEN W F, SHANG J, XING B H, WEI H T, GU C H, HUA Z L. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493.
[6] 李鹏.氢标领航 安储致远——专访中国工程院院士郑津洋[J].太阳能,2022(5):7-13. LI P. Hydrogen development in China: Interview with ZHENG Jinyang, Academician of Chinese Academy of Engineering[J]. Solar Energy, 2022(5): 7-13.
[7] 陈林,董绍华,李凤,张行.氢环境下压力容器及管道材料相容性研究进展[J].力学与实践,2022,44(3):503-518. CHEN L, DONG S H, LI F, ZHANG H. Some advances in studies of material compatibility of pressure vessels and pipelines in hydrogen atmosphere[J]. Mechanics in Engineering, 2022, 44(3): 503-518.
[8] 李玉星,张睿,刘翠伟,王财林,杨宏超,胡其会,张家轩,等.掺氢天然气管道典型管线钢氢脆行为[J].油气储运,2022,41(6):732-742. LI Y X, ZHANG R, LIU C W, WANG C L, YANG H C, HU Q H, ZHANG J X, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel[J/OL]. Oil &Gas Storage and Transportation: 2022,41(6): 732-742.
[9] 齐晓琳,马倬,陈林,董绍华.位错载氢运动对材料氢脆行为的影响[J].力学与实践,2022,44(3):519-525. QI X L, MA Z, CHEN L, DONG S H. Effect of hydrogen transportation by dislocations on hydrogen embrittlement of materials[J]. Mechanics in Engineering, 2022, 44(3): 519-525.
[10] 许未晴,鲁仰辉,孙晨,贾冠伟,李梦雅,雷鸣宇,等.天然气掺氢输送系统氢脆研究进展[J/OL].油气储运:1-10[2022-05-16]. http://kns.cnki.net/kcms/detail/13.1093.te.20220321.1817.008.html.XU W Q, LU Y H, SUN C, JIA G W, LI M Y, LEI M Y, et al. Research progress of hydrogen embrittlement in natural gas hydrogen mixing transportation system[J/OL]. Oil & Gas Storage and Transportation: 1-10[2022-05-16]. http://kns. cnki.net/kcms/detail/13.1093.te.20220321.1817.008.html.
[11] WILKENING H, BARALDI D. CFD modelling of accidental hydrogen release from pipelines[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2206-2215.
[12] 贾文龙,温川贤,杨明,黄军,吴瑕,李长俊.掺氢天然气输送管道阀室泄漏扩散规律研究[J].油气与新能源,2021,33(6):75-82. JIA W L, WEN C X, YANG M, HUANG J, WU X, LI C J. Study on leakage and diffusion of hydrogen mixed natural gas in the valve chamber[J]. Petroleum and New Energy, 2021, 33(6):75-82.
[13] 朱建鲁,周慧,李玉星,李方圆.掺氢天然气输送管道设计动态模拟[J].天然气工业,2021,41(11):132-142. ZHU J L, ZHOU H, LI Y X, LI F Y. Dynamic simulation of hydrogen blending natural gas transportation pipeline design[J]. Natural Gas Industry, 2021, 41(11): 132-142.
[14] 谢萍,伍奕,李长俊,贾文龙,张皓,吴瑕.混氢天然气管道输送技术研究进展[J].油气储运,2021,40(4):361-370. XIE P, WU Y, LI C J, JIA W L, ZHANG H, WU X. Research progress on pipeline transportation technology of hydrogenmixed natural gas[J]. Oil & Gas Storage and Transportation, 2021, 40(4): 361-370.
[15] 李亮,臧子璇,漆琦,李杜,黄小美.临街餐厅掺氢天然气泄漏爆炸模拟研究[J].煤气与热力,2022,42(5):33-38. LI L, ZANG Z X, QI Q, LI D, HUANG X M. Simulation study on leakage and explosion of hydrogen-blended natural gas in restaurant facing street[J]. Gas & Heat, 2022, 42(5): 33-38.
[16] 尚融雪,杨悦,李刚.高温下掺氢天然气层流预混火焰传播特性[J].东北大学学报(自然科学版),2021,42(8):1173-1179. SHANG R X, YANG Y, LI G. Propagation of laminar premixed flames of CH4/H2/air mixtures at elevated temperatures[J]. Journal of Northeastern University (Natural Science), 2021, 42(8): 1173-1179.
[17] 陈卓,李敬法,宇波.室内受限空间中掺氢天然气爆炸模拟[J].科学技术与工程,2022,22(14):5608-5614. CHEN Z, LI J F, YU B. Simulation of explosion of hydrogen-enriched natural gas in indoor confined space[J]. Science Technology and Engineering, 2022, 22(14): 5608-5614.
[18] SHIRVILL L C, ROBERTS T A, ROYLE M, WILLOUGHBY D B, SATHIAH P. Experimental study of hydrogen explosion in repeated pipe congestion—part 2: effects of increase in hydrogen concentration in hydrogen-methane-air mixture[J]. International Journal of Hydrogen Energy, 2019, 44(5): 3264-3276.
[19] LOWESMITH B J, HANKINSON G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2013, 91: 101-111.
[20] 陈晔,李毅,李紫婷,纪超.受限空间氢泄爆外部超压特性研究[J].消防科学与技术,2022,41(3):310-315. CHEN Y, LI Y, LI Z T, JI C. Study on the characteristics of external overpressure induced by vented hydrogen deflagrations[J]. Fire Science and Technology, 2022, 41(3):310-315.
[21] 司荣军.温度压力耦合对甲烷爆炸极限影响的试验研究[J].安全与环境学报,2014,14(4):32-35. SI R J. Experimental study on the explosion limits of methane under coupling effects of temperature and pressure[J]. Journal of Safety and Environment, 2014, 14(4): 32-35.
[22] 李西贵,滕霖,李卫东,黄鑫.管内障碍物位置对高压氢气泄漏自燃影响的数值模拟[J].油气储运,2021,40(11):1306-1313. LI X G, TENG L, LI W D, HUANG X. Numerical simulation of the effect of obstacle locations inside pipelines on spontaneous ignition resulted from high-pressure hydrogen leakage[J]. Oil & Gas Storage and Transportation, 2021, 40(11): 1306-1313.
[23] 尹渊博,王雅真,刘翠伟,李玉星.无约束条件下甲烷-空气预混气体爆炸有效体积计算[J].油气储运,2021,40(11):1299-1305. YIN Y B, WANG Y Z, LIU C W, LI Y X. Calculation of effective explosive volume of premixed methane-air gas under unconstraint conditions[J]. Oil & Gas Storage and Transportation, 2021, 40(11): 1299-1305.
[24] 熊毅,高萍,赵潇,赵立康.天然气管道泄漏应急抢修过程的动态AHP风险评价[J].油气储运,2021,40(12):1423-1429. XIONG Y, GAO P, ZHAO X, ZHAO L K. Dynamic AHP-based risk assessment for emergency repair of natural gas pipeline leakage[J]. Oil & Gas Storage and Transportation, 2021, 40(12): 1423-1429.
[25] 宋朝阳,刘威,姚天野.市政管网运行风险发生机理及评价指标体系[J].油气储运,2019,38(6):629-634,641. SONG Z Y, LIU W, YAO T Y. The operational risk mechanism and evaluation index system of municipal pipeline networks[J]. Oil & Gas Storage and Transportation, 2019, 38(6): 629-634, 641.
[26] 王武昌,章艺,李玉星,刘承松,梁蓝云.基于风险理论的天然气管网脆弱性分析方法[J].油气储运,2022,41(1):42-47. WANG W C, ZHANG Y, LI Y X, LIU C S, LIANG L Y. Vulnerability analysis of natural gas pipeline networks based on risk theory[J]. Oil & Gas Storage and Transportation, 2022, 41(1): 42-47.
[1]谷志宇 董绍华 牛景弘 史纪. 天然气管道泄漏后果影响区域的计算[J].油气储运,2013,32(1):85.[doi:10.6047/j.issn.1000-8241.2013.01.020]
Gu Zhiyu,Dong Shaohua,Niu Jinghong,et al.Calculation for influenced area of consequences of[J].Oil & Gas Storage and Transportation,2013,32(08):85.[doi:10.6047/j.issn.1000-8241.2013.01.020]
[2]赵力伟 林震欧 刘富君 钱岳强.双层罐底板结构立式储罐泄漏试验[J].油气储运,2013,32(8):872.[doi:10.6047/j.issn.1000-8241.2013.08.015]
Zhao Liwei,Lin Zhengou,Liu Fujun,et al. Leakage testing on the double-bottom plate structure of vertical tank[J].Oil & Gas Storage and Transportation,2013,32(08):872.[doi:10.6047/j.issn.1000-8241.2013.08.015]
[3]肖开喜,侯磊,黄亚楠,等.油罐泄漏扩散过程中罐区油气浓度分布规律数值模拟[J].油气储运,2022,41(09):1079.[doi:10.6047/j.issn.1000-8241.2022.09.011]
XIAO Kaixi,HOU Lei,HUANG Ya&apos,et al.Numerical simulation on concentration distribution law of oil and gas in tank farm during leakage diffusion[J].Oil & Gas Storage and Transportation,2022,41(08):1079.[doi:10.6047/j.issn.1000-8241.2022.09.011]
[4]张俊朋 苗青 荆少东 王永胜 欧阳欣 范振宁 梁海宁 张建.埋地CO2管道泄漏扩散特征研究进展[J].油气储运,2024,43(05):1.
ZHANG Jun-peng,MIAO Qing,JING Shao-dong,et al.Research progress on leakage characteristics of buried carbon dioxide pipelines[J].Oil & Gas Storage and Transportation,2024,43(08):1.
[5]胡玮鹏 陈光 齐宝金 张永海.埋地纯氢/掺氢输送天然气管道泄漏扩散数值模拟[J].油气储运,2023,42(10):1.
HU Weipeng,CHEN Guang,QI Baojin,et al. Numerical simulation of leakage and diffusion of buried pure hydrogen/hydrogen-doped natural gas pipeline[J].Oil & Gas Storage and Transportation,2023,42(08):1.
[6]胡玮鹏,陈光,齐宝金,等.埋地纯氢/掺氢天然气管道泄漏扩散数值模拟[J].油气储运,2023,42(10):1118.[doi:10.6047/j.issn.1000-8241.2023.10.005]
HU Weipeng,CHEN Guang,QI Baojin,et al.Numerical simulation of leakage and diffusion of buried pure hydrogen/hydrogen-doped natural gas pipeline[J].Oil & Gas Storage and Transportation,2023,42(08):1118.[doi:10.6047/j.issn.1000-8241.2023.10.005]
[7]张俊朋,苗青,荆少东,等.埋地CO2管道泄漏扩散特征研究进展[J].油气储运,2024,43(05):500.[doi:10.6047/j.issn.1000-8241.2024.05.003]
ZHANG Junpeng,MIAO Qing,JING Shaodong,et al.Research progress on characteristics of leakage and diffusion of buried CO2 pipeline[J].Oil & Gas Storage and Transportation,2024,43(08):500.[doi:10.6047/j.issn.1000-8241.2024.05.003]
[8]蒋宏业,寇明月,廖柯熹,等.掺氢天然气管道泄漏扩散研究现状及发展趋势[J].油气储运,2024,43(08):1.
Jiang Hongye,Kou Mingyue,Liao Kexi,et al.Research status and development trend of hydrogen-doped natural gas pipeline leakage diffusion[J].Oil & Gas Storage and Transportation,2024,43(08):1.
[9]蒋宏业,寇明月,廖柯熹,等.掺氢天然气管道泄漏扩散研究现状及发展趋势[J].油气储运,2024,43(08):855.[doi:10.6047/j.issn.1000-8241.2024.08.002]
JIANG Hongye,KOU Mingyue,LIAO Kexi,et al.Current status and developmental trend on leakage and dispersion research for hydrogen-blended natural gas pipeline[J].Oil & Gas Storage and Transportation,2024,43(08):855.[doi:10.6047/j.issn.1000-8241.2024.08.002]
孙齐,女,1970年生,高级工程师,1999年硕士毕业于中国石油大学(北京)油气储运工程专业,现主要从事新能源利用技术、天然气产业技术、数据分析与应用技术研究。地址:北京市朝阳区安立路101号名人大厦,100101。电话:18600002401。Email:sunqi@petrochina.com.cn通信作者:董绍华,男,1972年生,教授,博士生导师,2001年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事氢能输送、管道完整性管理、大数据与人工智能等的研究工作。地址:北京市昌平区府学路18号,102200。电话:010-89733657。Email:shdong@cup.edu.cn
基金项目:国家自然科学基金资助项目“X80管线钢氢损伤失效行为与完整性评价模型研究”,51874322;中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项“‘一带一路’海外长输管道完整性关键技术研究与应用”,ZLZX2020-05。
(收稿日期:2022-06-08;修回日期:2022-07-05;编辑:王雪莉)