[1]张劲军.易凝高黏原油流变学及输送技术研究与应用:回顾与展望[J].油气储运,2022,41(06):682-693.[doi:10.6047/j.issn.1000-8241.2022.06.010]
 ZHANG Jinjun.Research and application of rheology and pipeline transportation technologies of high-pour-point and viscous crude oils: retrospect and prospect[J].Oil & Gas Storage and Transportation,2022,41(06):682-693.[doi:10.6047/j.issn.1000-8241.2022.06.010]
点击复制

易凝高黏原油流变学及输送技术研究与应用:回顾与展望

参考文献/References:

[1] 黄维和.油气管道输送技术[M].北京:石油工业出版社,2012:1-6. HUANG W H. Oil and gas pipeline transportation technology[M]. Beijing: Petroleum Industry Press, 2012: 1-6.
[2] 严大凡.油气储运专业回顾与展望[J].油气储运,2003,22(9):1-3. YAN D F. A half century’s development in the subject of oil &gas storage and transportation of university of petroleum: review and prospect[J]. Oil & Gas Storage and Transportation, 2003, 22(9): 1-3.
[3] 严大凡.油气储运专业建业一甲子回溯[J].油气储运,2012, 31(6):401-406. YAN D F. The establishment of oil & gas storage and transportation specialty in China-sixty-year backtracking[J]. Oil & Gas Storage and Transportation, 2012, 31(6): 401-406.
[4] 闵希华,张劲军.多品种原油同管道输送技术[M].北京:石油工业出版社,2020:1-198. MIN X H, ZHANG J J. Technology for transporting multiple crudes through a pipeline[M]. Beijing: Petroleum Industry Press, 2020: 1-198.
[5] 王小龙,张劲军,宇波,李鸿英.西部原油管道多品种原油安全高效输送技术[J].油气储运,2014,33(12):1263-1271. WANG X L, ZHANG J J, YU B, LI H Y. Technologies for safe and efficient transportation of multiple crudes through the China West Pipeline[J]. Oil & Gas Storage and Transportation, 2014, 33(12): 1263-1271.
[6] 高鹏.含蜡原油流变性与蜡晶形态、结构及原油组成间关系研究[D].北京:中国石油大学(北京),2006. GAO P. Study on relation of waxy crude rheology to its composition and wax crystal morphology and structure[D]. Beijing: China University of Petroleum (Beijing), 2006.
[7] YAN D F, LUO Z M. Rheological properties of Daqing crude oil and their application in pipeline transportation[J]. SPE Production Engineering, 1987, 2(4): 267-276.
[8] 罗塘湖.含蜡原油流变特性及其管道输送[M].北京:石油工业出版社,1991:51-147. LUO T H. Rheological characteristics and pipeline transportation of waxy crude oil[M]. Beijing: Petroleum Industry Press, 1991:51-147.
[9] WARDHAUGH L T, BOGER D V. Flow characteristics of waxy crude oils: application to pipeline design[J]. AIChE Journal, 1991, 37(6): 871-885.
[10] 杨筱蘅.输油管道设计与管理[M].东营:中国石油大学出版社,2006:120-203. YANG X H. Design and management of oil pipelines[M]. Dongying: China University of Petroleum Press, 2006: 120-203.
[11] 李传宪.原油流变学[M].东营:中国石油大学出版社,2007:155-164. LI C X. Crude oil rheology[M]. Dongying: China University of Petroleum Press, 2007: 155-164.
[12] DING J L, ZHANG J J, LI H Y, ZHANG F, YANG X J. Flow behavior of Daqing waxy crude oil under simulated pipelining conditions[J]. Energy & Fuels, 2006, 20(6): 2531-2536.
[13] LIU H F, LU Y D, ZHANG J J. A comprehensive investigation of the viscoelasticity and time-dependent yielding transition of waxy crude oils[J]. Journal of Rheology, 2018, 62(2): 527-541.
[14] TENG H X, ZHANG J J. Modeling the thixotropic behavior of waxy crude[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 8079-8089.
[15] QIAN J H, ZHANG J J, LI H Y, ZHANG Q. Special report:study evaluates viscosity prediction of crude blends[J]. Oil &Gas Journal, 2006, 104(39): 61-62, 64, 66, 68.
[16] CHEN J, ZHANG J J, ZHANG F. New approach developed for estimating pour points of crude oil blends[J]. Oil & Gas Journal, 2003, 101(32): 59.
[17] SUN G Y, ZHANG J J. Structural breakdown and recovery of waxy crude oil emulsion gels[J]. Rheologica Acta, 2015, 54(9):817-829.
[18] 李传宪,阎孔尧,杨爽,夏政,王博,杨飞. CO2溶胀和CH4协同作用下长庆原油流动性的改善[J].石油化工高等学校学报, 2017,30(5):86-92. LI C X, YAN K Y, YANG S, XIA Z, WANG B, YANG F. CO2 swelling and synergistic effect of CH4 on rheological improvement of Changqing crude oil[J]. Journal of Petrochemical Universities, 2017, 30(5): 86-92.
[19] SUN G Y, LI C X, WEI G Q, YANG F. Characterization of the viscosity reducing efficiency of CO2 on heavy oil by a newly developed pressurized stirring-viscometric apparatus[J]. Journal of Petroleum Science and Engineering, 2017, 156: 299-306.
[20] CHEN J, ZHANG J J, LI H Y. Determining the wax content of crude oils by using differential scanning calorimetry[J]. Thermochimica Acta, 2004, 410(1/2): 23-26.
[21] LI H Y, ZHANG J J. A generalized model for predicting non-Newtonian viscosity of waxy crudes as a function of temperature and precipitated wax[J]. Fuel, 2003, 82(11): 1387-1397.
[22] PEDERSEN K S, R?NNINGSEN H P. Effect of precipitated wax on viscosity-a model for predicting non-Newtonian viscosity of crude oils[J]. Energy & Fuels, 2000, 14(1): 43-51.
[23] HAN S P, ZHANG J J, ZHU L L. Effect of the amount and the composition of precipitated n-alkanes on the yield stress of wax-decane gels[J]. Journal of Petroleum Science and Engineering, 2016, 147: 228-236.
[24] LI Y Z, HAN S P, LU Y D, ZHANG J J. Influence of asphaltene polarity on crystallization and gelation of waxy oils[J]. Energy & Fuels, 2018, 32(2): 1491-1497.
[25] 代佳林.胶质和沥青质对含蜡模拟油胶凝特性影响的研究[D].北京:中国石油大学(北京),2019. DAI J L. Study on influence of resins and asphaltenes on gelation of waxy model oils[D]. Beijing: China University of Petroleum (Beijing), 2019.
[26] XUE H Y, ZHANG J J, HAN S P, SUN M R, YAN X H, LI H Y. Effect of asphaltenes on the structure and surface properties of wax crystals in waxy oils[J]. Energy & Fuels, 2019, 33(10):9570-9584.
[27] CHEN C H, ZHANG J J, MA C B, LIANG H Q, QING M Y, XIE Y W, et al. Influence of wax precipitation on the impedance spectroscopy of waxy oils[J]. Energy & Fuels, 2019, 33(10):9767-9778.
[28] LI H Y, CHEN C H, HUANG Q, DING Y F, ZHUANG Y, XIE Y W, et al. Effect of pour point depressants on the impedance spectroscopy of waxy crude oil[J]. Energy & Fuels, 2021, 35(1): 433-443.
[29] HUANG J, ZHANG J J, LIU W W, XIE Y W, HUANG Q, LI H Y. Universal correlation to reconcile yielding characterizations of waxy oil gels[J]. Energy & Fuels, 2021, 35(5): 3798-3807.
[30] RODRIGUEZ-FABIA S, FYLLINGSNES R L, WINTER-HJELM N, NORRMAN J, PASO K G. Influence of measuring geometry on rheomalaxis of macrocrystalline wax-oil gels:alteration of breakage mechanism from adhesive to cohesive[J]. Energy & Fuels, 2019, 33(2): 654-664.
[31] 权忠舆.原油改性处理的管道输送工艺[J].油气储运,1996, 15(1):1-6. QUAN Z Y. On modified crude oil pipeline transportation process[J]. Oil & Gas Storage and Transportation, 1996, 15(1):1-6.
[32] QIAN J H, ZHANG J J, WANG K Z, QIU D P. Pipelining of viscous waxy crude with the pour-point-depressant beneficiation:successful experience in the Lu-Ning Pipeline[C]. Calgary: 2004 International Pipeline Conference, 2004: 2047-2054.
[33] 中国石油管道公司.油气管道化学添加剂技术[M].北京:石油工业出版社,2010:114-168. Chinese Petroleum Pipeline Company. Chemical additives for oil and gas pipelines[M]. Beijing: Petroleum Industry Press, 2010:114-168.
[34] YANG F, ZHAO Y S, SJ?BLOM J, LI C X, PASO K G. Polymeric wax inhibitors and pour point depressants for waxy crude oils: a critical review[J]. Journal of Dispersion Science and Technology, 2015, 36(2): 213-225.
[35] 张劲军.含蜡原油添加降凝剂输送中剪切作用的影响和模拟[D].北京:中国石油大学(北京),1998. ZHANG J J. Shear effect in pipelining waxy crudes treated with the pour-point-depressant and its simulation[D].Beijing: China University of Petroleum (Beijing), 1998.
[36] WEN J B, ZHANG J J, WANG Z H, ZHANG Z J, ZHENG F, ZHU Y M, et al. Full and partial emulsification of crude oil-water systems as a function of shear intensity, water fraction, and temperature[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9513-9520.
[37] LI H Y, LI Z X, XIE Y W, GUO W, HUANG Q, CHEN C H, et al. Impacts of shear and thermal histories on the stability of waxy crude oil flowability improvement by electric treatments[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108764.
[38] ZHANG J J, CHEN D B, YAN D F, YANG X H, SHEN C. Pipelining of heavy crude oil as oil-in-water emulsions[C]. Oklahoma City: SPE Production Operations Symposium, 1991:SPE-21733-MS.
[39] 刘天佑,张秀杰,张凡,凌一飞.粘稠油水环输送现场应用试验[J].油气储运,1991,10(1):32-40. LIU T Y, ZHANG X J, ZHANG F, LING Y F. Field practical test of viscous oil transportation in fluid ring state[J]. Oil &Gas Storage and Transportation, 1991, 10(1): 32-40.
[40] TAO R, TANG H. Reducing viscosity of paraffin base crude oil with electric field for oil production and transportation[J]. Fuel, 2014, 118: 69-72.
[41] 张劲军,李鸿英,黄骞,谢意蔚,陈朝辉,马晨波,等.原油电场改性技术研究进展[J].油气储运,2021,40(11):1201-1209. ZHANG J J, LI H Y, HUANG Q, XIE Y W, CHEN C H, MA C B, et al. Progress of research on electric field treatment technology for modification of crude oil[J]. Oil & Gas Storage and Transportation, 2021, 40(11): 1201-1209.
[42] MA C B, LU Y D, CHEN C H, FENG K, LI Z X, WANG X Y, et al. Electrical treatment of waxy crude oil to improve its cold flowability[J]. Industrial & Engineering Chemistry Research, 2017, 56(38): 10920-10928.
[43] HUANG Q, LI H Y, XIE Y W, DING Y F, ZHUANG Y, CHEN C H, et al. Electrorheological behaviors of waxy crude oil gel[J]. Journal of Rheology, 2021, 65(2): 103-112.
[44] CHEN C H, ZHANG J J, XIE Y W, HUANG Q, DING Y F, ZHUANG Y, et al. An investigation to the mechanism of the electrorheological behaviors of waxy oils[J]. Chemical Engineering Science, 2021, 239: 116646.
[45] GON?ALVES J L, BOMBARD A J F, SOARES D A W,CARVALHO R D M, NASCIMENTO A, SILVA M R, et al. Study of the factors responsible for the rheology change of a Brazilian crude oil under magnetic fields[J]. Energy & Fuels, 2011, 25(8): 3537-3543.
[46] EVDOKIMOV I N, KORNISHIN K A. Apparent disaggregation of colloids in a magnetically treated crude oil[J]. Energy & Fuels, 2009, 23(8): 4016-4020.
[47] 陈雪娇.磁场对含蜡原油流动性的影响机理研究[D].北京:中国石油大学(北京),2019. CHEN X J. Study on the mechanism of magnetic field effect on flowability of waxy crude oil[D]. Beijing: China University of Petroleum (Beijing), 2019.
[48] XIE Y W, ZHANG J J, MA C B, CHEN C H, HUANG Q, LI Z X, et al. Combined treatment of electrical and ethylene-vinyl acetate copolymer (EVA) to improve the cold flowability of waxy crude oils[J]. Fuel, 2020, 267: 117161.
[49] HUANG H R, WANG W, PENG Z H, LI K, DING Y F, YU W J, et al. Synergistic effect of magnetic field and nanocomposite pour point depressant on the yield stress of waxy model oil[J]. Petroleum Science, 2020, 17(3): 838-848.
[50] 崔秀国.冷热油交替输送管道非稳态水力—热力耦合问题分析及其应用[D].北京:中国石油大学(北京),2005. CUI X G. Analysis of transient hydraulic-thermal interaction during cool and hot oil batch pipelining and its applications[D]. Beijing: China University of Petroleum (Beijing), 2005.
[51] 王凯.原油管道差温顺序输送工艺数值研究[D].北京:中国石油大学(北京),2009. WANG K. Numerical study on batch pipelining of crude oils with different out-station temperatures[D]. Beijing: China University of Petroleum (Beijing), 2009.
[52] 黄启玉,张劲军,严大凡.一种新的蜡沉积模型[J].油气储运, 2003,22(11):22-25. HUANG Q Y, ZHANG J J, YAN D F. A new wax deposition model[J]. Oil & Gas Storage and Transportation, 2003, 22(11):22-25.
[53] 宫敬,王玮.海洋油气混输管道流动安全保障[M].北京:科学出版社,2016:82-109. GONG J, WANG W. Flow assurance of offshore oil and gas multiphase pipelines[M]. Beijing: Science Press, 2016: 82-109.
[54] 李慧源.沥青质和胶质对含蜡模拟油蜡沉积影响的研究[D].北京:中国石油大学(北京),2020.LI H Y. Research on the influence of asphaltenes and resins on wax deposition of waxy model oils[D]. Beijing: China University of Petroleum (Beijing), 2020.
[55] 李卫东,黄启玉,霍富永,高雪冬.原油管道清管蜡层剥离研究进展[J].油气储运,2021,40(3):263-270. LI W D, HUANG Q Y, HUO F Y, GAO X D. Progress of research on wax removal during pigging of oil pipeline[J]. Oil & Gas Storage and Transportation, 2021, 40(3): 263-270.
[56] 李苗.原油管道清管器运动规律研究[D].北京:中国石油大学(北京),2018. LI M. Study on the pig motion in the waxy crude oil pipeline[D]. Beijing: China University of Petroleum (Beijing), 2018.
[57] 张国忠,高探贵.东黄复线停输再启动过程研究[J].油气储运, 1996,15(9):37-40. ZHANG G Z, GAO T G. A study on the shutdown and restart course of Dong-Huang Looping Line[J]. Oil & Gas Storage and Transportation, 1996, 15(9): 37-40.
[58] 李才,刘云龙,苏仲勋.管内含蜡原油降温过程中的放热问题[J].油田地面工程,1994,13(1):18-20,31. LI C, LIU Y L, SU Z X. Problems of natural convection heat-releasing of waxy crude in pipe in course of temperature-decreasing[J]. Oil-field Surface Engineering, 1994, 13(1):18-20, 31.
[59] 许康.埋地含蜡原油管道流动安全性评价方法研究及应用[D].北京:中国石油大学(北京),2005. XU K. Study on flow safety evaluation of buried waxy crude pipelines and its application[D]. Beijing: China University of Petroleum (Beijing), 2005.
[60] 张劲军,宇波,于鹏飞,韩东旭.基于可靠性的含蜡原油管道停输再启动安全性评价方法[J].石油科学通报,2016,1(1):154-163. ZHANG J J, YU B, YU P F, HAN D X. Reliability-based approach to the assessment of restartability of waxy crude pipelines[J]. Petroleum Science Bulletin, 2016, 1(1): 154-163.
[61] HOLDER G A, WINKLER J. Wax crystallization from distillate fuels[J]. Journal of the Institute of Petroleum, 1965, 51: 228-252.
[62] LI H Y, ZHANG J J, YAN D F. Correlations between the pour point/gel point and the amount of precipitated wax for waxy crudes[J]. Petroleum Science and Technology, 2005, 23(11/12):1313-1322.
[63] 张劲军.对原油流变学研究的若干思考[J].油气储运,2003, 22(9):11-17. ZHANG J J. Cogitation on the state-of-the-art and development of crude oil rheology[J]. Oil & Gas Storage and Transportation, 2003, 22(9): 11-17.
[64] ABEDI B, RODRIGUES E C, DE SOUZA MENDES P R. Irreversible time dependence of gelled waxy crude oils: flow experiments and modeling[J]. Journal of Rheology, 2020, 64(5):1237-1250.
[65] ABEDI B, PERES MIGUEL M J, DE SOUZA MENDES P R, MENDES R. Startup flow of gelled waxy crude oils in pipelines:the role of volume shrinkage[J]. Fuel, 2021, 288: 119726.
[66] MARCHESINI F H, ALICKE A A, DE SOUZA MENDES P R, ZIGLIO C M. Rheological characterization of waxy crude oils: sample preparation[J]. Energy & Fuels, 2012, 26(5):2566-2577.
[67] ZALAWADIA H, PAWDE C. Case study on handling paraffinic and viscous crude of Mangala oil field of Rajasthan-India[C]. Cairo: North Africa Technical Conference and Exhibition, 2013: SPE-164670-MS.
[68] CHALA G T, SULAIMAN S A, JAPPER-JAAFAR A. Flow start-up and transportation of waxy crude oil in pipelines-a review[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 251: 69-87.
[69] GEEST C V D, MELCHUNA A, BIZARRE L, BANNWART A C, GUERSONI V C B. Critical review on wax deposition in single-phase flow[J]. Fuel, 2021, 293: 120358.

相似文献/References:

[1]张冬敏,姜保良,张立新,等.复合纳米材料对含蜡原油析蜡特性的影响[J].油气储运,2011,30(04):249.[doi:10.6047/j.issn.1000-8241.2011.04.002]
 Zhang Dongmin,Jiang Baoliang,Zhang Lixin,et al.The influence of composite nanometer-sized material on wax deposit property of waxy crude oil[J].Oil & Gas Storage and Transportation,2011,30(06):249.[doi:10.6047/j.issn.1000-8241.2011.04.002]
[2]孟江,张其敏,肖和平,等.无机盐对 O/W 型稠油乳状液乳滴形态和流变性的影响[J].油气储运,2011,30(01):43.[doi:10.6047/j.issn.1000-8241.2011.01.012]
 Meng Jiang,Zhang Qimin,Xiao Heping,et al.The influence of inorganic salt on emulsion droplet shape and rheological properties of W/O viscous oil emulsion[J].Oil & Gas Storage and Transportation,2011,30(06):43.[doi:10.6047/j.issn.1000-8241.2011.01.012]
[3]盖平原.稠油管输起始加热温度熵产最小优化设计[J].油气储运,2011,30(07):501.[doi:10.6047/j.issn.1000-8241.2011.07.006]
 Gai Pingyuan.Entropy generation minimization optimization design for starting heating temperature of heavy oil in pipeline[J].Oil & Gas Storage and Transportation,2011,30(06):501.[doi:10.6047/j.issn.1000-8241.2011.07.006]
[4]代晓东,贾子麒,孙伶,等.利用RC1e反应量热仪研究含蜡原油热处理机理[J].油气储运,2011,30(05):359.[doi:10.6047/j.issn.1000-8241.2011.05.011]
 Dai Xiaodong,Jia Ziqi,Sun Ling,et al.Mettler Toledo RC1e to research the heat treatment mechanics of waxy crude oil[J].Oil & Gas Storage and Transportation,2011,30(06):359.[doi:10.6047/j.issn.1000-8241.2011.05.011]
[5]李其抚,苗青,高新楼,等.用滞回曲线法表征含蜡原油的触变过程[J].油气储运,2011,30(10):761.[doi:10.6047/j.issn.1000-8241.2011.10.013]
 Li Qifu,Miao Qing,Gao Xinlou,et al.Characterize the thixotropic process of waxy crude oil with hysteresis curve method[J].Oil & Gas Storage and Transportation,2011,30(06):761.[doi:10.6047/j.issn.1000-8241.2011.10.013]
[6]田茂昌 敬加强 万捷 谢怡宁 李丹.稠油-水两相流乳化条件的实验模拟[J].油气储运,2012,31(4):250.[doi:10.6047/j.issn.1000-8241.2012.04.003]
 Tian Maochang,Jing Jiaqiang,Wan Jie,et al.Experimental simulation of emulsification condition of heavy oil/water two-phase flow[J].Oil & Gas Storage and Transportation,2012,31(06):250.[doi:10.6047/j.issn.1000-8241.2012.04.003]
[7]贾邦龙 张劲军.含蜡原油触变性测试方法[J].油气储运,2012,31(4):254.[doi:10.6047/j.issn.1000-8241.2012.04.004]
 Jia Banglong and Zhang Jinjun.Thixotropy test method of waxy crude oil[J].Oil & Gas Storage and Transportation,2012,31(06):254.[doi:10.6047/j.issn.1000-8241.2012.04.004]
[8]张天娇 李汉勇 宫敬 段纪淼.油气水三相流体高温高压流变特性实验[J].油气储运,2012,31(5):352.[doi:10.6047/j.issn.1000-8241.2012.05.008]
 Zhang Tianjiao,Li Hanyong,Gong Jing,et al.Experiment of high-temperature and high-pressure rheological characteristics of oil-gas-water fluid[J].Oil & Gas Storage and Transportation,2012,31(06):352.[doi:10.6047/j.issn.1000-8241.2012.05.008]
[9]徐诚,黄启玉,黄小娟,等.破乳剂对含水稠油流变性的影响[J].油气储运,2010,29(9):664.[doi:10.6047/j.issn.1000-8241.2010.09.006]
 Xu Cheng,Huang Qiyu,Huang Xiaojuan.Influence of Demulsifier on the Rheology of Water-content Heavy Crude Oil[J].Oil & Gas Storage and Transportation,2010,29(06):664.[doi:10.6047/j.issn.1000-8241.2010.09.006]
[10]张冬敏,阳明书,姜保良,等.纳米技术在含蜡原油管道输送中的应用[J].油气储运,2010,29(7):487.[doi:10.6047/j.issn.1000-8241.2010.07.002]
 Zhang Dongmin,Yang Mingshu,Jiang Baoliang.Application of Nanotechnology in Waxy Oil Pipeline Transportation[J].Oil & Gas Storage and Transportation,2010,29(06):487.[doi:10.6047/j.issn.1000-8241.2010.07.002]

备注/Memo

张劲军,男,1962年生,教授,1998年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事易凝高黏原油流变学与管道输送技术的教学与研究工作。地址:北京市昌平区府学路18号,102249。电话:010-89734627。Email:zhangjj@cup.edu.cn
基金项目:国家自然科学基金重点项目“深水环境下易凝高黏原油-天然气输送系统流动保障基础问题研究”,51134006;国家自然科学基金重点项目“含蜡原油常温输送机理及流动改性方法研究”, 51534007;国家自然科学基金科学部主任基金项目“基于可靠性的原油管道停输再启动安全性评价方法研究”,50944030;国家自然科学基金面上项目“含蜡原油电场改性机理研究”,52174066。
(收稿日期:2022-04-14;修回日期:2022-04-21;编辑:刘朝阳)

更新日期/Last Update: 2022-06-25