[1]张宏,吴锴,冯庆善,等.高钢级管道环焊接头力学性能与适用性评价研究进展[J].油气储运,2022,41(05):481-497.[doi:10.6047/j.issn.1000-8241.2022.05.001]
 ZHANG Hong,WU Kai,FENG Qingshan,et al.State of the art on mechanical properties and fitness-for-service assessment of high-grade pipeline girth weld[J].Oil & Gas Storage and Transportation,2022,41(05):481-497.[doi:10.6047/j.issn.1000-8241.2022.05.001]
点击复制

高钢级管道环焊接头力学性能与适用性评价研究进展

参考文献/References:

[1] 张振永,张文伟,周亚薇,薄国公,邹宇.中俄东线OD 1 422 mm埋地管道的断裂控制设计[J].油气储运,2017,36(9):1059-1064. ZHANG Z Y, ZHANG W W, ZHOU Y W, BO G G, ZOU Y. The fracture control design of the OD 1 422 mm buried pipeline in China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36(9): 1059-1064.
[2] 赵新伟,池强,张伟卫,杨峰平,许春江.管径1 422 mm的X80焊管断裂韧性指标[J].油气储运,2017,36(1):37-43. ZHAO X W, CHI Q, ZHANG W W, YANG F P, XU C J. Fracture toughness indicators of OD 1 422 mm X80 welded steel pipe[J]. Oil & Gas Storage and Transportation, 2017, 36(1):37-43.
[3] 蒋庆梅,张小强,李宝华,何明杰.中俄东线D1 422 mm管道可靠性评估分析[J].油气田地面工程,2021,40(1):76-82,88. JIANG Q M, ZHANG X Q, LI B H, HE M J. Reliability assessment of D1 422 mm pipeline in China-Russia Eastern Natural Gas Pipeline[J]. Oil-Gas Field Surface Engineering, 2021, 40(1): 76-82, 88.
[4] 张振永,张文伟,张金源,刘玉卿.基于可靠性设计方法的长输管道选材方案[J].油气储运,2014,33(11):1202-1207. ZHANG Z Y, ZHANG W W, ZHANG J Y, LIU Y Q. Material scheme of long-distance pipeline based on the reliability design method[J]. Oil & Gas Storage and Transportation, 2014, 33(11):1202-1207.
[5] WU K, ZHANG H, YANG Y, LIU X B. Strength matching factor of pipeline girth weld designed by reliability method[J]. Journal of Pipeline Science and Engineering, 2021, 1(3): 298-307.
[6] Shell Global Solutions International BV. Design and engineering practice 61.40.20.30-welding of pipelines and related facilities:DEP 61.40.20.30-Gen-2010[S]. Hague: Shell Company, 2010:15-16.
[7] TOTAL S. A.. Site welding of carbon steel pipelines (sweet and sour service,onshore and offshore) according to API STD 1104:GS EP PLR 425[S]. Paris: TOTAL S. A., 2013: 24-25.
[8] ANDREWS R M, DENYS R M, KNAUF G, ZAREA M. EPRG guidelines on the assessment of defects in transmission pipeline girth welds–revision 2014[J]. The Journal of Pipeline Engineering, 2015, 14(1): 9-21.
[9] Det Norske Veritas. Submarine pipeline systems: DNVGL-ST-F101-2017[S]. Oslo: DNV GL AS, 2017: 348-349.
[10] International Organization for Standardization. Petroleum and natural gas industries—pipeline transportation systems—welding of pipelines: ISO 13847:2013[S]. Geneva: ISO, 2013:30-31.
[11] American Petroleum Institute. Welding of pipelines and related facilities: API Standard 1104: twenty-first edition[S]. Washington, DC: API Publishing Service, 2013: 17-19.
[12] Standards Australia. Pipelines-gas and liquid petroleum-welding: AS 2885.2-2007[S]. Sydney: Standards Australia, 2007: 36-37.
[13] Canadian Standards Association. Oil and gas pipeline systems:CSA Z662-11[S]. Mississauga: CSA Group, 2013: 113-121.
[14] 李建军,高泽涛,续理,王乐生,吴大可,吕向阳,等.钢质管道焊接及验收:GB/T 31032—2014[S].北京:中国标准出版社, 2015:13-16. LI J J, GAO Z T, XU L, WANG L S, WU D K, LYU X Y, et al. Welding and acceptance standard for steel pipings and pipelines: GB/T 31032—2014[S]. Beijing: Standards Press of China, 2015: 13-16.
[15] American Petroleum Institute. Welding of pipelines and related facilities: API Standard 1104: nineteenth edition[S]. Washington, DC: API Publishing Service, 1999: 49-59.
[16] American Petroleum Institute. Welding of pipelines and related facilities: API Standard 1104: twentieth edition[S]. Washington, DC: API Publishing Service, 2005: 47-57.
[17] Det Norske Veritas. Assessment of flaws in pipeline and riser girth welds: DNVGL-RP-F108-2017[S]. Oslo: DNV, 2017: 62-65.
[18] 谢铁军,陈学东,孙亮,贾国栋,张峥,轩福贞,等.在用含缺陷压力容器安全评定:GB/T 19624—2019[S].北京:中国标准出版社,2019:119-120. XIE T J, CHEN X D, SUN L, JIA G D, ZHANG Z, XUAN F Z, et al. Safety assessment of in-service pressure vessels containing defects: GB/T 19624—2019[S]. Beijing: Standards Press of China, 2019: 119-120.
[19] GostPerevod. Trunk gas pipelines. Design standard for pressure over 10 MPa. Principal requirements: GOST R 55989-2014[S]. Moscow: GostPerevod, 2014: 12-20.
[20] 隋永莉,靳海成,尹长华,黄福祥,闫臣,郭静薇,等.油气管道工程焊接技术规范 第1部分:线路焊接:Q/SY GJX 137.1—2012[S].北京:中国石油天然气股份有限公司管道建设项目经理部,2012:9-14. SUI Y L, JIN H C, YIN C H, HUANG F X, YAN C, GUO J W, et al. Technical specification of welding for oil and gas pipeline project-part 1: mainline welding: Q/SY GJX 137.1—2012[S]. Beijing: Pipeline Construction Project Management Department of CNPC, 2012: 9-14.
[21] 中国石油天然气股份有限公司. 中俄东线天然气管道工程技术规范 第12部分:线路焊接:Q/SYGD 0503.12—2016[S].廊坊:中国石油天然气股份有限公司管道分公司, 2016:10-11. China National Petroleum Pipeline Company. Technical code for China Russia east gas pipeline engineering part 12: line welding:Q/SYGD 0503.12—2016[S]. Langfang: PetroChina Pipeline Company, 2016: 10-11.
[22] 朱勐晖.高温环境下微小试样材料力学性能测试方法的研究[D].西安:西北工业大学,2006. ZHU M H. Study of test methods of mechanical properties of microsample material under high-temperature environment[D]. Xi'an: Northwestern Polytechnical University, 2006.
[23] 汤忠斌,徐绯,许泽建,李玉龙,李朋洲.焊缝结构微区材料力学性能研究[J].机械强度,2010,32(1):58-63. TANG Z B, XU F, XU Z J, LI Y L, LI P Z. Research on mechanical properties of micro-zones of welding line[J]. Journal of Mechanical Strength, 2010, 32(1): 58-63.
[24] NIE H L, MA W F, XUE K, REN J J, DANG W, WANG K, et al. A novel test method for mechanical properties of characteristic zones of girth welds[J]. International Journal of Pressure Vessels and Piping, 2021, 194(Part A): 104533.
[25] 吴锴.高钢级管道环焊缝应变能力研究[D].北京:中国石油大学(北京),2021. WU K. Strain capacity analysis of girth welds in high-grade pipelines[D]. Beijing: China University of Petroleum (Beijing), 2021.
[26] WU X, SHUAI J, XU K, LV Z Y, SHAN K. Determination of local true stress-strain response of X80 and Q235 girth-welded joints based on digital image correlation and numerical simulation[J]. International Journal of Pressure Vessels and Piping, 2020, 188: 104232.
[27] ZHANG Z L, HAUGE M, THAULOW C, ?DEG?RD J. A notched cross weld tensile testing method for determining true stress–strain curves for weldments[J]. Engineering Fracture Mechanics, 2002, 69(3): 353-366.
[28] TU S W, REN X B, NYHUS B, AKSELSEN O M, HE J Y, ZHANG Z L. A special notched tensile specimen to determine the flow stress-strain curve of hardening materials without applying the Bridgman correction[J]. Engineering Fracture Mechanics, 2017, 179: 225-239.
[29] TU S W, REN X B, HE J Y, ZHANG Z L. A method for determining material’s equivalent stress-strain curve with any axisymmetric notched tensile specimens without Bridgman correction[J]. International Journal of Mechanical Sciences, 2018, 135: 656-667.
[30] International Organization for Standardization. Metallic materials—unified method of test for the determination of quasistatic fracture toughness: ISO 12135:2016[S]. Geneva:ISO, 2016: 29-37.
[31] 刘涛,蔡力勋,高怡斐,包陈,方健,李荣峰,等.金属材料 准静态断裂韧度的统一试验方法:GB/T 21143—2014[S].北京:中国标准出版社,2015:22-38. LIU T, CAI L X, GAO Y F, BAO C, FANG J, LI R F, et al. Metallic materials—unified method of test for determination of quasistatic fracture toughness: GB/T 21143—2014[S]. Beijing:Standards Press of China, 2015: 22-38.
[32] ASTM International. Standard test method for measurement of fracture toughness: ASTM E1820-18[S]. Conshohocken:ASTM International, 2018: 13-22.
[33] BSI. Metallic materials-method of test for the determination of quasistatic fracture toughness of welds: BS EN ISO 15653:2018[S]. London: BSI Standard Limited 2018, 2018: 21-44.
[34] BSI. Fracture mechanics toughness tests-part 4: method for determination of fracture resistance curves and initiation values for stable crack extension in metallic materials: BS 7448-4(1997): 1997[S]. London: BSI, 1997: 25-33.
[35] ANDERSON T L. Fracture mechanics: fundamentals and applications[M]. 4th ed. Boca Raton: CRC Press, 2017: 1-272.
[36] BETEG?N C, HANCOCK J W. Two-parameter characterization of elastic-plastic crack-tip fields[J]. Journal of Applied Mechanics, 1991, 58(1): 104-110.
[37] CHAO Y J, YANG S, SUTTON M A. On the fracture of solids characterized by one or two parameters: theory and practice[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(4):629-647.
[38] CHAO Y J, ZHU X K. Constraint-modified J-R curves and its application to ductile crack growth[J]. International Journal of Fracture, 2000, 106(2): 135-160.
[39] LAM P S, CHAO Y J, ZHU X K, KIM Y, SINDELAR R L.Determination of constraint-modified J-R curves for carbon steel storage tanks[J]. Journal of Pressure Vessel Technology, 2003, 125(2): 136-143.
[40] O’DOWD N P, SHIH C F. Family of crack-tip fields characterized by a triaxiality parameter—I. Structure of fields[J]. Journal of the Mechanics and Physics of Solids, 1991, 39(8): 989-1015.
[41] O’DOWD N P, SHIH C F. Two-parameter fracture mechanics:theory and applications: NUREG/CR-5958[R]. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1994.
[42] O’DOWD N P. Applications of two parameter approaches in elastic-plastic fracture mechanics[J]. Engineering Fracture Mechanics, 1995, 52(3): 445-465.
[43] GUO W L. Elastoplastic three dimensional crack border field—I. Singular structure of the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 93-104.
[44] GUO W L. Elastoplastic three dimensional crack border field—II. Asymptotic solution for the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 105-113.
[45] GUO W L. Elasto-plastic three-dimensional crack border field—III. Fracture parameters[J]. Engineering Fracture Mechanics, 1995, 51(1): 51-71.
[46] GUO W. Recent advances in three-dimensional fracture mechanics[J]. Key Engineering Materials, 2000, 183/187:193-198.
[47] GUO W L, PITT S D, JONES R. Three dimensional strength assessment for damage tolerant structures[C]. Xi'an:International Symposium on Strength Theory: Application, Development and Prospects for 21st Century, 1998: 799-804.
[48] ZHAO J H. Three-parameter approach for elastic-plastic stress field of an embedded elliptical crack[J]. Engineering Fracture Mechanics, 2009, 76(16): 2429-2444.
[49] CLAUSMEYER H, KUSSMAUL K, ROOS E. Influence of stress state on the failure behavior of cracked components made of steel[J]. Applied Mechanics Reviews, 1991, 44(2): 77-92.
[50] MOSTAFAVI M, SMITH D J, PAVIER M J. Quantification of constraint effects in fracture mechanism transition for cracked structures under mixed mode loading[J]. Fatigue and Fracture Engineering Materials and Structures, 2009, 32(1): 5-17.
[51] MOSTAFAVI M, SMITH D J, PAVIER M J. Fracture of aluminium alloy 2024 under biaxial and triaxial loading[J]. Engineering Fracture Mechanics, 2011, 78(8): 1705-1716.
[52] MOSTAFAVI M, SMITH D J, PAVIER M J. A micromechanical fracture criterion accounting for in-plane and out-of-plane constraint[J]. Computational Materials Science, 2011, 50(10): 2759-2770.
[53] MOSTAFAVI M, MARROW T J. In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading[J]. Engineering Fracture Mechanics, 2011, 78(8): 1756-1770.
[54] MOSTAFAVI M, SMITH D J, PAVIER M J. Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens[J]. Fatigue and Fracture Engineering Materials and Structures, 2010, 33(11): 724-739.
[55] YANG J, WANG G Z, XUAN F Z, TU S T. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint[J]. Engineering Fracture Mechanics, 2014, 115: 296-307.
[56] YANG J, WANG G Z, XUAN F Z, TU S T. Unified correlation of in-plane and out-of-plane constraints with fracture toughness[J]. Fatigue and Fracture Engineering Materials and Structures, 2014, 37(2): 132-145.
[57] ZHEN Y, CHANG Q, CAO Y G, NIU R Y. A novel unified characterization parameter of in-plane and out-of-plane constraints based on critical CTOA[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(5): 1305-1317.
[58] American Petroleum Institute. Fitness-for-service: API 579-1-2016[S]. Washington D C: API Publishing Service, 2016: 29-37.
[59] 张宏,吴锴,刘啸奔,杨悦,隋永莉,张振永.直径1 422 mm X80管道环焊接头应变能力数值模拟方法[J].油气储运,2020, 39(2):162-168. ZHANG H, WU K, LIU X B, YANG Y, SUI Y L, ZHANG Z Y. Numerical simulation method for strain capacity of girth welding joint on X80 pipeline with 1 422 mm diameter[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 162-168.
[60] WU K, LIU X B, ZHANG H, SUI Y L, ZHANG Z Y, YANG D, et al. Fracture response of 1 422-mm diameter pipe with double-V groove weld joints and circumferential crack in fusion line[J]. Engineering Failure Analysis, 2020, 115: 104641.
[61] WU K, ZHANG H, YANG Y, LIU X B. Numerical analysis of the crack driving force of mismatched girth welded pipes subject to large plastic deformations[C]. Virtual: ASME 2021 Pressure Vessels & Piping Conference, 2021: V002T03A043.
[62] ZHAO X X, XU L Y, JING H Y, HAN Y D, ZHAO L, CAO J, et al. A strain-controlled fracture assessment for submarine thin-walled pipes with V-groove welds and circumferential embedded cracks[J]. Thin-Walled Structures, 2019, 145: 106377.
[63] ZHAO X X, XU L Y, JING H Y, HAN Y D, ZHAO L. A strain-based fracture assessment for offshore clad pipes with ultra undermatched V groove weld joints and circumferential surface cracks under large-scale plastic strain[J]. European Journal of Mechanics-A/Solids, 2019, 74: 403-416.
[64] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth: part I, yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1997, 99(1): 2-15.
[65] TVERGAARD V, NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169.
[66] ZHANG Z L, THAULOW C, ?DEG?RD J. A complete Gurson model approach for ductile fracture[J]. Engineering Fracture Mechanics, 2000, 67(2): 155-168.
[67] QIANG B, WANG X. Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel: a numerical investigation using GTN models[J]. Engineering Fracture Mechanics, 2019, 213: 264-279.
[68] OH Y R, NAM H S, KIM Y J, MIURA N. Application of the GTN model to ductile crack growth simulation in through-wall cracked pipes[J]. International Journal of Pressure Vessels and Piping, 2018, 159: 35-44.
[69] KINGKLANG S, UTHAISANGSUK V. Plastic deformation and fracture behavior of X65 pipeline steel: Experiments and modeling[J]. Engineering Fracture Mechanics, 2018, 191:82-101.
[70] JANG Y Y, KIM I J, HUH N S, KIM K S, KIM Y P. Numerical investigation of the transferability of ductile fracture behavior between thin-walled surface-cracked pipe, curved wide plate (CWP) and single edge notched tension (SENT) specimens[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4233-4243.
[71] SARZOSA D F B, RUGGIERI C. A numerical investigation of constraint effects in circumferentially cracked pipes and fracture specimens including ductile tearing[J]. International Journal of Pressure Vessels and Piping, 2014, 120/121: 1-18.
[72] MUSRATI W, MEDJO B, GUBELJAK N, ?TEFANE P, VELJI D, SEDMAK A, et al. Fracture assessment of seam and seamless steel pipes by application of the ring-shaped bending specimens[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102302.
[73] XU J, ZHANG Z L, ?STBY E, NYHUS B, SUN D B. Effects of crack depth and specimen size on ductile crack growth of SENT and SENB specimens for fracture mechanics evaluation of pipeline steels[J]. International Journal of Pressure Vessels and Piping, 2009, 86(12): 787-797.
[74] XU J, ZHANG Z L, ?STBY E, NYHUS B, SUN D B. Constraint effect on the ductile crack growth resistance of circumferentially cracked pipes[J]. Engineering Fracture Mechanics, 2010, 77(4): 671-684.
[75] TU S W, REN X B, HE J Y, ZHANG Z L. Numerical study on the effect of the Lüders plateau on the ductile crack growth resistance of SENT specimens[J]. International Journal of Fracture, 2018, 214(2): 185-200.
[76] KUMAR V, GERMAN M D, SHIH C F. An engineering approach for elastic plastic fracture analysis: NP-1931[R]. Palo Alto: Electric Power Research Institute, 1981.
[77] KUMAR V, GERMAN M D. Elastic-plastic fracture analysis of through-wall and surface flaws in cylinders: NP-5596[R]. Palo Alto: Electric Power Research Institute, 1988.
[78] ZAHOOR A. Ductile fracture handbook, Volume 1:circumferential throughwall cracks: NP-6301[R]. Palo Alto:Electric Power Research Institute, 1989.
[79] CHIODO M S G, RUGGIERI C. J and CTOD estimation procedure for circumferential surface cracks in pipes under bending[J]. Engineering Fracture Mechanics, 2010, 77(3): 415-436.
[80] PAREDES M, RUGGIERI C. Engineering approach for circumferential flaws in girth weld pipes subjected to bending load[J]. International Journal of Pressure Vessels and Piping, 2015, 125: 49-65.
[81] LEI Y, AINSWORTH R A. A J integral estimation method for cracks in welds with mismatched mechanical properties[J]. International Journal of Pressure Vessels and Piping, 1997, 70(3): 237-245.
[82] SOUZA R F, RUGGIERI C, ZHANG Z L. A framework for fracture assessments of dissimilar girth welds in offshore pipelines under bending[J]. Engineering Fracture Mechanics, 2016, 163: 66-88.
[83] AINSWORTH R A. The assessment of defects in structures of strain hardening material[J]. Engineering Fracture Mechanics, 1984, 19(4): 633-642.
[84] KIM Y J, BUDDEN P J. Reference stress approximations for J and COD of circumferential through-wall cracked pipes[J]. International Journal of Fracture, 2002, 116(3): 195-218.
[85] TKACZYK T, O’DOWD N P, NIKBIN K. Fracture assessment procedures for steel pipelines using a modified reference stress solution[J]. Journal of Pressure Vessel Technology, 2009, 131(3): 031409.
[86] JIA P Y, JING H Y, XU L Y, HAN Y D, ZHAO L. A modified fracture assessment method for pipelines under combined inner pressure and large-scale axial plastic strain[J]. Theoretical and Applied Fracture Mechanics, 2017, 87: 91-98.
[87] LINKENS S, FORMBY C L, AINSWORTH R A. A strain-based approach to fracture assessment-example applications[C]. Cambridge: Fifth International Conference on Engineering Structural Integrity Assessment, 2000:45-52.
[88] BUDDEN P J. Failure assessment diagram methods for strain-based fracture[J]. Engineering Fracture Mechanics, 2006, 73(5):537-552.
[89] JIA P Y, JING H Y, XU L Y, HAN Y D, ZHAO L. A modified reference strain method for engineering critical assessment of reeled pipelines[J]. International Journal of Mechanical Sciences, 2016, 105: 23-31.
[90] JAYADEVAN K R, ?STBY E, THAULOW C. Fracture response of pipelines subjected to large plastic deformation under tension[J]. International Journal of Pressure Vessels and Piping, 2004, 81(9): 771-783.
[91] ?STBY E. Fracture control—offshore pipelines: new strain-based fracture mechanics equations including the effects of biaxial loading, mismatch, and misalignment[C]. Halkidiki:ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering, 2005: 649-658.
[92] NOURPANAH N, TAHERI F. Development of a reference strain approach for assessment of fracture response of reeled pipelines[J]. Engineering Fracture Mechanics, 2010, 77(12):2337-2353.
[93] ZHAO H S, LIE S T, ZHANG Y. Elastic-plastic fracture analyses for misaligned clad pipeline containing a canoe shape surface crack subjected to large plastic deformation[J]. Ocean Engineering, 2017, 146: 87-100.
[94] LIE S T, ZHAO H S, VIPIN S P. New weld toe magnification factors for semi-elliptical cracks in plate-to-plate butt-welded joints[J]. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40(2): 207-220.
[95] BSI. Guide to methods for assessing the acceptability of flaws in metallic structures: BS 7910:2019[S]. London: British Standard Limited, 2019: 7/1-7/39.
[96] Central Electricity Board. Assessment of the integrity of structures containing defects, revision 4: R/H/R6[S]. Gloucester:UK Nuclear Power Generation Industry, 2001: 12-46.
[97] SMITH S D. Consideration of a proposed SBAD method for BS7910[J]. International Journal of Pressure Vessels and Piping, 2018, 168: 142-147.
[98] LEI Y, AINSWORTH R A. Failure assessment diagrams for cracks in welds with mismatched mechanical properties[C]. Montreal: American Society of Mechanical Engineers (ASME) Pressure Vessels and Piping Conference, 1996: 65-73.
[99] 吴锴,张宏,杨悦,刘啸奔,隋永莉,陈朋超.考虑强度匹配的高钢级管道环焊缝断裂评估方法[J].油气储运,2021,40(9):1008-1016. WU K, ZHANG H, YANG Y, LIU X B, SUI Y L, CHEN P C. Fracture assessment method for girth welds of high-grade steel pipelines considering strength matching[J]. Oil & Gas Storage and Transportation, 2021, 40(9): 1008-1016.
[100] BANNISTER A C. Structural integrity assessment procedures for European industry: BRPR950024[R]. Rotherham: British Steel Plc, 1999.
[101] WANG Y Y, RUDLAND D, DENYS R, HORSLEY D. A preliminary strain-based design criterion for pipeline girth welds[C]. Calgary: 2002 4th International Pipeline Conference, 2002: 415-427.
[102] WANG Y Y, CHENG W T, HORSLEY D. Tensile strain limits of buried defects in pipeline girth welds[C]. Calgary:2004 International Pipeline Conference, 2004: 1607-1614.
[103] WANG Y Y. Tensile strain limits and material specifications for strain-based design of pipelines[C]. Beijing: International Seminar on X100/X120 High Performance Pipe Steels, 2005:375-387.
[104] CSA Group. Oil and gas pipeline systems: CSA Z662-07[S]. Ottawa: CSA Group, 2007: 356-385.
[105] 余志峰,史航,张文伟,许杰,高剑锋,张振永,等.油气输送管道线路工程抗震技术规范:GB/T 50470—2017[S].北京:中国计划出版社,2017:57-59. YU Z F, SHI H, ZHANG W W, XU J, GAO J F, ZHANG Z Y, et al. Technical code for seismic resistance of oil and gas transmission pipeline engineering: GB/T 50470—2017[S]. Beijing: China Planning Press, 2017: 57-59.
[106] WANG Y Y, LIU M, ZHANG F, HORSLEY D, NANNEY S. Multi-tier tensile strain models for strain-based design: part 1—fundamental basis[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 447-458.
[107] LIU M, WANG Y Y, SONG Y X, HORSLEY D, NANNEY S. Multi-tier tensile strain models for strain-based design:part 2—development and formulation of tensile strain capacity models[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 415-425.
[108] LIU M, WANG Y Y, HORSLEY D, NANNEY S. Multi-tier tensile strain models for strain-based design: part 3—model evaluation against experimental data[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 427-438.
[109] WANG Y Y, LIU M, LONG X, STEPHENS M, PETERSEN R, GORDON R. Validation and documentation of tensile strain limit design models for pipelines: DTPH56-06-T-000014[R]. Houston: Technical Toolboxes, Inc., 2011.
[110] WANG Y Y, LIU M, SONG Y, STEPHENS M, PETERSEN R, GORDON R. Second generation models for strain-based design: DTPH56-06-T000014[R]. Houston: Technical Toolboxes, Inc., 2011.
[111] FAIRCHILD D P, MACIA M L, KIBEY S, WANG X, KRISHNAN V R, BARDI F, et al. A multi-tiered procedure for engineering critical assessment of strain-based pipelines[C]. Maui: The Twenty-first International Offshore and Polar Engineering Conference, 2011: ISOPE-I-11-144.
[112] FAIRCHILD D P, KIBEY S A, TANG H, KRISHNAN V R, WANG X Y, MACIA M L, et al. Continued advancements regarding capacity prediction of strain-based pipelines[C]. Calgary: 2012 9th International Pipeline Conference, 2012:297-305.
[113] TANG H, FAIRCHILD D, PANICO M, CRAPPS J, CHENG W T. Strain capacity prediction of strain-based pipelines[C]. Calgary: 2014 10th International Pipeline Conference, 2014:V004T11A025.
[114] AGBO S, LIN M, AMELI I, IMANPOUR A, DUAN D M, CHENG J J R, et al. Experimental evaluation of the effect of the internal pressure and flaw size on the tensile strain capacity of welded X42 vintage pipelines[J]. International Journal of Pressure Vessels and Piping, 2019, 173: 55-67.
[115] MIURA N, KASHIMA K, MIYAZAKI K, AOIKE S, HISATSUNE M, HASEGAWA K. Development of flaw evaluation criteria for class 2 and 3 light water reactor piping-establishment of flaw evaluation method for moderate-toughness pipes: T75[R]. Kanagawa: CRIEPI, 2003.
[116] DENYS R M. Wide plate testing of weldments, part I, II, and III, fatigue and fracture testing of weldments[C]. Philadelphia:ASTM STP 1058, 1990: 157-228.
[117] YANG Y, LIU X B, WU K, SUI Y L, FENG Q S, WANG D Y, et al. Full-scale experimental investigation of the fracture behaviours of welding joints of APL X80 wide plate based on DIC technology[J]. Engineering Failure Analysis, 2022, 131:105832.

相似文献/References:

[1]曾忠刚 温秀荷 索杏兰 孔军 姜敏 陈凯 赵庆兵 曾朗峻.塔河凝析油管道结蜡计算[J].油气储运,2012,31(8):622.[doi:10.6047/j.issn.1000-8241.2012.08.018]
 Zeng Zhongang,Wen Xiuhe,Suo Xinglan,et al.Wax deposition calculation for Tahe Condensate Pipeline[J].Oil & Gas Storage and Transportation,2012,31(05):622.[doi:10.6047/j.issn.1000-8241.2012.08.018]
[2]夏文鹤 茹黎南 李明 曹谢东.基于卫星物联网技术的油气管道远程监控[J].油气储运,2012,31(12):898.[doi:10.6047/j.issn.1000-8241.2012.12.006]
 Xia Wenhe,Ru Linan,Li Ming,et al. Remote monitoring on oil and gas pipelines with satellite Internet of Things network[J].Oil & Gas Storage and Transportation,2012,31(05):898.[doi:10.6047/j.issn.1000-8241.2012.12.006]
[3]董绍华 韩忠晨 杨毅 曹兴.物联网技术在管道完整性管理中的应用[J].油气储运,2012,31(12):906.[doi:10.6047/j.issn.1000-8241.2012.12.008]
 Dong Shaohua,Han Zhongchen,Yang Yi,et al.The application of Internet of Things technology in the integrity management of pipeline[J].Oil & Gas Storage and Transportation,2012,31(05):906.[doi:10.6047/j.issn.1000-8241.2012.12.008]
[4]李睿,侯宇,刘淑聪,等.锚纹特征对管道外防腐环氧涂层附着力的影响[J].油气储运,2011,30(05):355.[doi:10.6047/j.issn.1000-8241.2011.05.010]
 Li Rui,Hou Yu,Li Jingmiao,et al.Impact of pattern on the adhesion of pipe external epoxy coating[J].Oil & Gas Storage and Transportation,2011,30(05):355.[doi:10.6047/j.issn.1000-8241.2011.05.010]
[5]段纪淼,宫敬,张宇,等.多相混输管道蜡沉积研究进展[J].油气储运,2011,30(04):241.[doi:10.6047/j.issn.1000-8241.2011.04.001]
 Duan Jimiao,Gong Jing,Zhang Yu,et al.Research progress of wax deposition in multiphase mixed transmission pipeline[J].Oil & Gas Storage and Transportation,2011,30(05):241.[doi:10.6047/j.issn.1000-8241.2011.04.001]
[6]宋晓琴,刘广文,王雯娟.管道油品泄漏原因及其对环境的影响[J].油气储运,2011,30(04):297.[doi:10.6047/j.issn.1000-8241.2011.04.016]
 Song Xiaoqin,Liu Guangwen,Wang Wenjuan. The influence of oil pipeline leakage on environmental pollution [J].Oil & Gas Storage and Transportation,2011,30(05):297.[doi:10.6047/j.issn.1000-8241.2011.04.016]
[7]蔡亮学,何利民,吕宇玲,等.水平定向钻管道穿越孔底泥浆的力学特性[J].油气储运,2011,30(01):25.[doi:10.6047/j.issn.1000-8241.2011.01.007]
 Cai Liangxue,He Limin,Lv Yuling,et al.Hole-bottom slurry mechanical properties of horizontal directional drilling in pipeline crossing project[J].Oil & Gas Storage and Transportation,2011,30(05):25.[doi:10.6047/j.issn.1000-8241.2011.01.007]
[8]樊三新,刘玉玲,楚威威.高寒地区管道低温水试压方法[J].油气储运,2011,30(01):73.[doi:10.6047/j.issn.1000-8241.2011.01.020]
 Fan Sanxin,Liu Yuling,Chu Weiwei.Pipeline hydrotest method of cold water in frigid zone[J].Oil & Gas Storage and Transportation,2011,30(05):73.[doi:10.6047/j.issn.1000-8241.2011.01.020]
[9]杜明俊,张振庭,张朝阳,等.多相混输管道90°弯管冲蚀破坏应力分析[J].油气储运,2011,30(06):427.[doi:10.6047/j.issn.1000-8241.2011.06.006]
 Du Mingjun,Chao Ling,Fu Xiaodong,et al.Analysis of erosion fracture stress of 90° elbow in multi-phase mixed transmission pipeline[J].Oil & Gas Storage and Transportation,2011,30(05):427.[doi:10.6047/j.issn.1000-8241.2011.06.006]
[10]高河东,祁志江,任金岭,等.川气东送管道野三河跨越方案比选与实施[J].油气储运,2011,30(06):445.[doi:10.6047/j.issn.1000-8241.2011.06.011]
 Gao Hedong,Qi Zhijiang,Ren Jinling,et al.Programs comparison and construction of the Yesanhe River Overhead Crossing NG Project of Sichuan-to-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2011,30(05):445.[doi:10.6047/j.issn.1000-8241.2011.06.011]

备注/Memo

张宏,男,1963年生,教授,博士生导师,2003年博士毕业于中国石油大学(北京)机械设计及理论专业,现主要从事油气储运设施结构强度理论与相关技术的研究工作。地址:北京市昌平区府学路18号中国石油大学(北京),102249。电话:13601034401。Email:hzhang@cup.edu.cn
基金项目:国家石油天然气管网集团有限公司科学研究与技术开发项目“高钢级管道环焊缝失效机理研究”,WZXGL202105。
(收稿日期:2022-04-06;修回日期:2022-04-24;编辑:张腾)

更新日期/Last Update: 2022-05-25