版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
顺北油气田集输管网气液混输特性模拟
Simulation on characteristics of gas-liquid mixed transportation in the gathering pipeline network of Shunbei Oil and Gas Field
oil-gas gathering and transportation
; gas-liquid mixed transportation pipeline; complex terrain; hydraulic calculation model; simulation顺北油气田集输管网集输半径大、气油比高、地形起伏大、流态复杂,时常引起管道低洼处积液量大、段塞流等多种复杂工艺问题。为此,建立气液混输管网水力仿真计算模型,并利用顺北油气田现场数据对模型进行修正,进而开发油气混输管网仿真计算程序,对顺北1区集输管网气液混输特性进行仿真及参数预测。结果表明:建立的水力计算模型仿真结果与实测数据的误差基本在±6%以内,满足运行需求;管网各管道的持液率均较低,流型以分层流和环状流为主;针对管网中压降与温降较大、管输效率较低、积液量较大的管道分别提出了优化及保护建议。研究成果可为气液混输管网设计及安全运行提供技术依据。(图3,表7,参30)
The gathering pipeline network in the Shunbei Oil and Gas Field has the characteristics of large gathering radius, high gas-oil ratio, undulating terrain and complex flow patterns, which often result in complex process problems such as large amount of liquid accumulation and slug flow in the low areas of pipeline. Thus, a hydraulic calculation model of gas-liquid mixed transportation pipeline network was established by numerical simulation and corrected with the field data of Shunbei Oil and Gas Field. Thereby, a simulation calculation program was developed for the oil-liquid mixed transportation pipeline network. Further, the simulation and parameter prediction were performed for the gas-liquid mixed transportation characteristics of pipeline network in Shunbei Block-1. The result shows that the error between the simulation results of the hydraulic calculation model and the measured data is basically within ±6%, which satisfies the operation requirements. Besides, the pipeline sections in the network are at a low liquid holdup and in the main pattern of stratified and annular flows. Moreover, recommendations on optimization and protection were put forward for the pipeline sections with great pressure and temperature drop, low transportation efficiency and large liquid accumulation. Generally, the research results could provide strong technical support for the design and safe operation of gas-liquid mixed transportation pipeline network. (3 Figures, 7 Tables, 30 References)
[1] 刘建武,何利民.积液在湿气输送管道中的发展过程分析[J].油气田地面工程,2019,38(增刊1):76-80.LIU J W, HE L M. Analysis of liquid loading development process in wet gas pipelines[J]. Oil-GasField Surface Engineering, 2019, 38(S1): 76-80.
[2] 李岩松.气液两相混输管道水热力模型研究进展[J].油气储运, 2017,36(9):993-1000. LI Y S. Research progress on the hydro-thermal models of gas-liquid two-phase mixed transmission pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(9): 993-1000.
[3] LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48.
[4] EATON B A, KNOWLES C R, SILBERBRG I H. The prediction of flow patterns, liquid holdup and pressure losses occurring during continuous two-phase flow in horizontal pipelines[J]. Journal of Petroleum Technology, 1967, 19(6):815-828.
[5] BEGGS D H, BRILL J P. A study of two-phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973, 25(5): 607-617.
[6] TAITEL Y, DUKLER A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE Journal, 1976, 22(1): 47-55.
[7] ANDRITSOS N, HANRATTY T J. Influence of interfacial waves in stratified gas-liquid flows[J]. AIChE Journal, 1987, 33(3): 444-454.
[8] FAN Y Q. An investigation of low liquid loading gas-liquid stratified flow in near-horizontal pipes[D]. Tulsa: The University of Tulsa, 2005.
[9] 刘自龙,廖锐全,雷宇,罗威,苏煜彬.大管径水平管气液两相分层流和环状流持液率模型[J].西安石油大学学报(自然科学版),2019,34(6):33-38. LIU Z L, LIAO R Q, LEI Y, LUO W, SU Y B. Liquid holdup models of gas-liquid two-phase stratified flow and annular flow in horizontal pipe of large diameter[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2019, 34(6): 33-38.
[10] 王武昌,李玉星,唐建峰,喻西崇.低含液率多相管路平均持液率[J].化工学报,2005,56(6):1004-1008. WANG W C, LI Y X, TANG J F, YU X C. Average holdup in multiphase pipelines with low loads of liquids[J]. CIESC Journal, 2005, 56(6): 1004-1008.
[11] 郑平,赵梁,刘永铭.预测气液两相分层流界面剪切应力的新方法[J].西南石油大学学报(自然科学版),2015,37(6):119-126.ZHENG P, ZHAO L, LIU Y M. A new method for predicting interfacial shear stress of stratified gas-liquid two-phase flow[J]. Journal of Southwest Petroleum University (Science &Technology Edition), 2015, 37(6): 119-126.
[12] 邹斌,吴昆芳,许博文.倾斜气液多相管流持液率计算方法优选[J].中州煤炭,2016(12):158-162. ZOU B, WU K F, XU B W. Optimal selection of calculation method of liquid holdup of gas-liquid multiphase flow in inclined pipeline[J]. Zhongzhou Coal, 2016(12): 158-162.
[13] 王文光,颜慧慧,曲兆光,刘春雨,万宇飞.起伏湿气管路持液率和压降计算模型[J].石油工程建设,2016,42(6):1-4,10. WANG W G, YAN H H, QU Z G, LIU C Y, WAN Y F. Calculation model of liquid holdup and pressure drop in undulating wet-gas gathering pipeline[J]. Petroleum Engineering Construction, 2016, 42(6): 1-4, 10.
[14] 董勇,李梦霞,廖锐全,罗威.垂直井筒中多相流动的Beggs-Brill压力梯度预测模型的改进[J].石油天然气学报,2016, 38(1):40-47. DONG Y, LI M X, LIAO R Q, LUO W. Modification of Beggs-Brill pressure gradient predicting model for multiphase flow in vertical wells[J]. Journal of Oil and Gas Technology, 2016, 38(1): 40-47.
[15] 李玉星,喻西崇,冯叔初,郭书平. Beggs-Brill截面含液率计算模型的剖析与修正[J].油气储运,2000,19(8):31-34. LI Y X, YU X C, FENG S C, GUO S P. The analysis and modification to liquid holdup calculation model of Beggs-Brill[J]. Oil & Gas Storage and Transportation, 2000, 19(8):31-34.
[16] 刘晓倩,李玉星,李顺丽,袁柱.起伏湿气管道持液率分布规律及临界倾角模型[J].油气储运,2017,36(2):177-184. LIU X Q, LI Y X, LI S L, YUAN Z. Liquid holdup distribution laws and critical inclination angle model of undulating wet gas pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(2): 177-184.
[17] 潘杰,蒲雪雷,王武杰,闫敏敏,王亮亮.微倾管中低含液率气液分层流临界携液流速预测模型[J].天然气工业,2019, 39(12):124-133. PAN J, PU X L, WANG W J, YAN M M, WANG L L. A prediction model for the critical liquid-carrying velocity of gas-liquid stratified flow in micro-tilting line pipes with low liquid contents[J]. Natural Gas Industry, 2019, 39(12): 124-133.
[18] 王海燕,王春升,李玉星,蔡晓华.气液两相流流型的判别方法[J].油气储运,2019,38(7):772-777. WANG H Y, WANG C S, LI Y X, CAI X H. Flow-pattern-prediction models used for gas-liquid two-phase flow[J]. Oil &Gas Storage and Transportation, 2019, 38(7): 772-777.
[19] 李爽,李玉星,王冬旭.基于小波变换与神经网络的上倾管流型识别方法[J].油气储运,2020,39(8):912-918. LI S, LI Y X, WANG D X. Identification method for flow pattern in upward pipe based on wavelet transform and neural network[J]. Oil & Gas Storage and Transportation, 2020, 39(8): 912-918.
[20] 文松青,张涛,张奇超.成品油上倾管道油水两相流相分布识别方法[J].油气储运,2019,38(9):1022-1028. WEN S Q, ZHANG T, ZHANG Q C. Phase distribution identification method for oil-water two-phase flow in updip products pipelines[J]. Oil & Gas Storage and Transportation, 2019, 38(9): 1022-1028.
[21] LIU L, BAI B F. Error analysis of liquid holdup measurement in gas-liquid annular flow through circular pipes using high-speed camera method[J]. Journal of Shanghai Jiaotong University (Science), 2018, 23(S1): 34-40.
[22] 徐文龙,曾萍,王惠,于淑珍,张立楠.复杂湿气集输管网清管时机的确定[J].油气储运,2014,33(3):279-282. XU W L, ZENG P, WANG H, YU S Z, ZHANG L N. Determination of pigging period for complex wet-gas gathering pipeline network[J]. Oil & Gas Storage and Transportation, 2014, 33(3): 279-282.
[23] 刘文红,郭烈锦,程开河,韩新利,赵新伟,杨龙.水平及微倾斜管内油气水三相流流型特性[J].石油学报,2006,27(3):120-125. LIU W H, GUO L J, CHENG K H, HAN X L, ZHAO X W, YANG L. Characteristics of oil-gas-water three-phase flow pattern in horizontal and slightly inclined pipes[J]. Acta Petrolei Sinica, 2006, 27(3): 120-125.
[24] 宫敬,刘德生.水平管内油气水三相流动规律研究[J].石油化工高等学校学报,2011,24(2):87-91. GONG J, LIU D S. Three-phase oil-air-water flow in horizontal pipes[J]. Journal of Petrochemical Universities, 2011, 24(2): 87-91.
[25] 李晓平,王丽玲,刘振,周军,张萌.基于视频处理的分层流持液率测量[J].油气储运,2014,33(1):28-31. LI X P, WANG L L, LIU Z, ZHOU J, ZHANG M.Measurement of liquid holdup of stratified flow based on video processing[J]. Oil & Gas Storage and Transportation, 2014, 33(1): 28-31.
[26] 梁法春,赵靖文,孟佳,李琦瑰,李乃明.基于语义分割的气液两相塞状流持液率测量[J].油气储运,2021,40(11):1272-1277,1292. LIANG F C, ZHAO J W, MENG J, LI Q G, LI N M. Gas-liquid plug flow liquid holdup measurement using semantic segmentation[J]. Oil & Gas Storage and Transportation, 2021, 40(11): 1272-1277, 1292.
[27] 肖荣鸽,靳帅帅,庄琦,周鹏,冯鑫.基于WOA-BP算法的持液率预测模型研究[J].化学工程,2022,50(1):67-73. XIAO R G, JIN S S, ZHUANG Q, ZHOU P, FENG X. Prediction model of liquid holdup based on WOA-BP network[J]. Chemical Engineering, 2022, 50(1): 67-73.
[28] 郑琳,刘云.基于大数据分析的段塞流持液率预测模型[J].石油化工应用,2021,40(12):40-45. ZHENG L, LIU Y. Liquid holdup prediction model of slug flow based on big data analysis[J]. Petrochemical Industry Application, 2021, 40(12): 40-45.
[29] 邵孟良,于颖敏.基于遗传算法的BP神经网络气液两相流持液率预测模型优化[J].西安石油大学学报(自然科学版), 2019,34(6):44-49. SHAO M L, YU Y M. Optimization of gas-liquid two-phase flow liquid hold-up prediction model with BP neural network based on genetic algorithm[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2019, 34(6): 44-49.
[30] 陈星杙,刘伟,袁宗明,谢英,贺三.基于ACE算法的水平管道持液率计算模型[J].中国海上油气,2018,30(2):180-186. CHEN X Y, LIU W, YUAN Z M, XIE Y, HE S. An ACE algorithm-based model to calculate liquid holdup of horizontal pipe[J]. China Offshore Oil and Gas, 2018, 30(2): 180-186.
[1]蔡广星,许康,马猛.油气集输分布式能源系统的构成及节能效果[J].油气储运,2016,35(预出版):1.
CAI Guangxing,XU Kang,MA Meng.Composition of distributed energy system for oil & gas gathering and its energy saving effect[J].Oil & Gas Storage and Transportation,2016,35(04):1.
[2]蔡广星,许康,马猛.油气集输分布式能源系统的构成及节能效果[J].油气储运,2015,34(10):1119.[doi:10.6047/j.issn.1000-8241.2015.10.021]
CAI Guangxing,XU Kang,MA Meng.Composition of distributed energy system for oil & gas gathering and its energy saving effect[J].Oil & Gas Storage and Transportation,2015,34(04):1119.[doi:10.6047/j.issn.1000-8241.2015.10.021]
[3]陈星杙,刘伟,袁宗明,等.海底气液混输管道瞬态清管数值模拟[J].油气储运,2018,37(12):1410.[doi:10.6047/j.issn.1000-8241.2018.12.015]
CHEN Xingyi,LIU Wei,YUAN Zongming,et al.Numerical simulation on transient pigging of submarine gas-liquid
mixed pipeline[J].Oil & Gas Storage and Transportation,2018,37(04):1410.[doi:10.6047/j.issn.1000-8241.2018.12.015]
[4]曹学文 李相 张磐 张卫兵 张志贵 边江.90°水平弯管内环状流流动特性[J].油气储运,2023,42(01):1.
CAO Xuewen,LI Xiang,ZHANG Pan,et al.Flow characteristics of annular flow in 90° horizontal elbow[J].Oil & Gas Storage and Transportation,2023,42(04):1.
战征,男,1974年生,高级工程师,1999年毕业于西南石油学院设备管理专业,现主要从事油气田地面集输及工程管理方向的研究工作。地址:新疆乌鲁木齐市新市区长春南路466号, 830011。电话:13309960896。Email:zhanz.xbsj@sinopec.com
(收稿日期:2021-03-10;修回日期:2021-12-02;编辑:张静楠)