[1]吕杨,柴德民,李晓宇,等.界面特性与粘附对探究凝油粘壁机理的启示[J].油气储运,2021,40(12):1338-1348.[doi:10.6047/j.issn.1000-8241.2021.12.003]
 LYU Yang,CHAI Demin,LI Xiaoyu,et al.Enlightenment of interfacial behavior and adhesion for study on wall sticking mechanism of condensate oil[J].Oil & Gas Storage and Transportation,2021,40(12):1338-1348.[doi:10.6047/j.issn.1000-8241.2021.12.003]
点击复制

界面特性与粘附对探究凝油粘壁机理的启示

参考文献/References:

[1] 吕杨,朱国承,霍富永,杜鑫,黄启玉. 不加热集油粘壁规律研究进展[J]. 化工进展,2020,39(2):478-488. LYU Y, ZHU G C, HUO F Y, DU X, HUANG Q Y. Research progress on wall sticking of gelled crude oil at low-temperaturet ransportation[J]. Chemical Industry and Engineering Progress,2020, 39(2): 478-488.
[2] 张明珠. 粘附理论发展述评[J]. 天津轻工业学院学报,1996(2):70-74. ZHANG M Z. A review of development of theories of adhesion[J]. Journal of Tianjin Institute of Light Industry,1996(2): 70-74.
[3] MCBAIN J W, BAKR A M. A new sorption balance[J]. Journal of the American Chemical Society, 2002, 48(3): 690-695.
[4] WAKE W C. Theories of adhesion and uses of adhesives: a review[J]. Polymer, 1978, 19(3): 291-308.
[5] HINE P J, MUDDARRIS S E, PACKHA D E. Surface pretreatment of zinc and its adhesion to epoxy resins[J]. The Journal of Adhesion, 1984, 17(3): 207-229.
[6] BAIR H E, MATSUOKA S, VADIMSKY R G, WANG T T. Consideration of energy dissipation for the strength of adhesive joints[J]. The Journal of Adhesion, 1971, 3(2): 89-102.
[7] WANG T T, VAZIRANI H N. Peel strength and failure mechanisms in oxidized copper-polyethylene lap joints bonded with flexible epoxy[J]. The Journal of Adhesion, 1972, 4(4): 353-364.
[8] DERYAGUIN B V. Effect of surface forces on the properties of boundary and thin layers of liquids and disperse systems[J]. Pure and Applied Chemistry, 1965, 10(4): 375-394.
[9] WEAVER C. Adhesion of metals to polymers[J]. Faraday Special Discussions of the Chemical Society, 1972, 2: 18-25.
[10] CHAPMAN B N. Thin-film adhesion[J]. Journal of Vacuum Science and Technology, 1974, 11: 106.
[11] BIKERMAN J J. The effect of surface tension on the breaking stress of adhesive joints[J]. Macromolecular Materials and Engineering, 1972, 26(1): 177-178.
[12] SHARPE L H, SCHONHORN H. Surface energetics,adhesion, and adhesive joints[J]. Advances in Chemistry,1964, 43: 189-201.
[13] 朱步瑶,赵振国. 界面化学基础[M]. 北京:化学工业出版社,1996:70-79. ZHU B Y, ZHAO Z G. Interface chemistry[M]. Beijing:Chemical Industry Press, 1996: 70-79.
[14] 李文涛,雍佳乐,杨青,陈烽,方瑶,侯洵. 基于特殊润湿性材料的油水分离[J]. 物理化学学报,2018,34(5):456-475. LI W T, YONG J L, YANG Q, CHEN F, FANG Y, HOU X. Oil-water separation based on the materials with special wettability[J]. Acta Physico-Chimica Sinica, 2018, 34(5): 456-475.
[15] YOUNG T. An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805, 95: 65-87.
[16] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994.
[17] BORMASHENKO E. Young, Boruvka-Neumann, Wenzel and Cassie-Baxter equations as the transversality conditions for the variational problem of wetting[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 345(1/2/3):163-165.
[18] YONG J L, YANG Q, CHEN F, ZHANG D S, DU G Q, BIAN H, et al. Superhydrophobic PDMS surfaces with threedimensional(3D) pattern-dependent controllable adhesion[J].Applied Surface Science, 2014, 288: 579-583.
[19] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944,40(40): 546-551.
[20] 潘慧铭,黄素娟. 表面、界面的作用与粘接机理(一)[J]. 粘接,2003,24(2):40-45. PAN H M, HUANG S J. Effect of surface, interface and adhesion principle (I)[J]. Adhesion in China, 2003, 24(2): 40-45.
[21] FOWKES F M. Attractive forces at interfaces[J]. Industrial and Engineering Chemistry, 1964, 56(12): 40-52.
[22] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science,1969, 13(8): 1741-1747.
[23] 史启祯. 无机化学与化学分析[M]. 北京:高等教育出版社,2011:108-115. SHI Q Z. Inorganic chemistry and chemical analysis[M].Beijing: Higher Education Press, 2011:108-115.
[24] FOWKES F M, MOSTAFA M A. Acid-base interactions in polymer adsorption[J]. Industrial and Engineering Chemistry Product Research and Development, 1978, 17(1): 3-7.
[25] 潘慧铭,黄素娟. 表面、界面的作用与粘接机理(二)[J]. 粘接,2003,24(3):41-46. PAN H M, HUANG S J. Effect of surface, interface and adhesion principle (II)[J]. Adhesion in China, 2003, 24(3):41-46.
[26] 潘慧铭,黄素娟. 表面、界面的作用与粘接机理(三)[J]. 粘接,2003,24(4):37-42. PAN H M, HUANG S J. Effect of surface, interface and adhesion principle (III)[J]. Adhesion in China, 2003, 24(4):37-42.
[27] VOYUTSKII S S, VAKULA V L. The role of diffusion phenomena in polymer-to-polymer adhesion[J]. Journal of Applied Polymer Science, 1963, 7(2): 475-491.
[28] HANSEN C M. Hansen solubility parameters[M]. Boca Raton:CRC Press, 2000: 74-76.
[29] IYENGAR Y, ERICKSON D E. Role of adhesive-substrate compatibility in adhesion[J]. Journal of Applied Polymer Science, 2010, 11(11): 2311-2324.
[30] MITTAL K L,PIZZI A. 粘接表面处理技术[M]. 陈步宁,黎复华,译. 北京:化学工业出版社,2004:121-146. MITTAL K L, PIZZI A. Adhesion promotion techniques[M].CHEN B N, LI F H, translated. Beijing: Chemical Industry Press, 2004: 121-146.
[31] 瓦伦丁 L. 波波夫. 接触力学与摩擦学的原理及其应用[M]. 李强,雒建斌,译. 第2 版. 北京:清华大学出版社,2019:46-51. POPOV V L. Contact mechanics and friction physical principles and applications[M]. LI Q, LUO J B, translated. 2nd ed.Beijing: Tsinghua University Press, 2019: 46-51.
[32] JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, 324(1558): 301-313.
[33] DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326.
[34] TABOR D. Surface forces and surface interactions[J]. Journal of Colloid and Interface Science, 1977, 58(1): 2-13.
[35] MAUGIS D. Adhesion of spheres: the JKR-DMT transition using a dugdale model[J]. Journal of Colloid and Interface Science, 1992, 150(1): 243-269.
[36] DUGDALE D S. Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids, 1960, 8(2):100-104.
[37] BRADLEY R S. LXXIX. The cohesive force between solid surface and the surface energy of solids[J]. The London,Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1932, 13(86): 853-862.
[38] JOHNSON K L, GREENWOOD J A. An adhesion map for the contact of elastic spheres[J]. Journal of Colloid and Interface Science, 1997, 192(2): 326-333.
[39] DOS SANTOS R G, MOHAMED R S, BANNWART A C, et al. Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water[J].Journal of Petroleum Science and Engineering, 2006, 51(1/2):9-16.
[40] CUIEC L. Rock/crude-oil interactions and wettability: an attempt to understand their interrelation[C]. Houston:Proceedings of the SPE Annual Technical Conference and Exhibition, 1984: 13211.
[41] MCGHEE J W, CROCKER M E, DONALDSON E C. Relative wetting properties of crude oils in Berea sandstone: BETC/RI-78/9[R]. Bartlesville: Bartlesville Energy Technology Center,1979: 330-333.
[42] KIM S T, BOUDH-HIR M E, MANSOORI G A. The role of asphaltene in wettability reversal[C]. New Orleans: Proceedings of the SPE Annual Technical Conference and Exhibition, 1990:20700-MS.
[43] 吕鹏,李明远,杨子浩,林梅钦,董朝霞,彭勃. 油藏润湿性影响因素综述[J]. 科学技术与工程,2015,15(25):88-94. LYU P, LI M Y, YANG Z H, LIN M Q, DONG Z X, PENG B. Review of the influencing factors of reservoir wettability[J]. Science Technology and Engineering, 2015, 15(25): 88-94.
[44] BUCKLEY J S, LIU Y. Some mechanisms of crude oil/brine/solid interactions[J]. Journal of Petroleum Science and Engineering, 1998, 20(3/4): 155-160.
[45] ANDERSEN W G. Wettability literature survey-part 1: rock/oil/brine interactions and the effects of core handling on wettability[J]. Journal of Petroleum Technology, 1986, 38(10):1125-1144.
[46] AL-SAHHAF T A, FAHIM M A, ELKILANI A S. Retardation of asphaltene precipitation by addition of toluene,resins, deasphalted oil and surfactants[J]. Fluid Phase Equilibria, 2002, 194/195/196/197: 1045-1057.
[47] ANGLE C W, LONG Y C, HAMZA H, LUE L. Precipitation of asphaltenes from solvent-diluted heavy oil and thermodynamic properties of solvent-diluted heavy oil solutions[J]. Fuel, 2006,85(4): 492-506.
[48] KUZNICKI N P, HARBOTTLE D, MASLIYAH J H, XU Z H. Probing mechanical properties of water-crude oil interfaces and colloidal interactions of petroleum emulsions using atomic force microscopy[J]. Energy & Fuels, 2017, 31(4):3445-3453.
[49] JOONAKI E, BUCKMAN J, BURGASS R, TOHIDI B. Water versus asphaltenes; liquid-liquid and solid-liquid molecular interactions unravel the mechanisms behind an improved oil recovery methodology[J]. Scientific Reports,2019, 9: 11369.
[50] YAN J, PLANCHER H, MORROW N R. Wettability changes induced by adsorption of asphaltenes[J]. SPE Production & Facilities, 1997, 12(4): 259-266.
[51] ASLAN S, NAJAFABADI N F, FIROOZABADI A. Nonmonotonicity of the contact angle from NaCl and MgCl2 concentrations in two petroleum fluids on atomistically smooth surfaces[J]. Energy & Fuels, 2016, 30(4): 2858-2864.
[52] AL MASKARI N S, SARI A, SAEEDI A, XIE Q. Influence of surface roughness on the contact angle due to calcite dissolution in an oil-brine-calcite system: a nanoscale analysis using atomic force microscopy and geochemical modeling[J]. Energy & Fuels,2019, 33(5): 4219-4224.
[53] LASHKARBOLOOKI M, AYATOLLAHI S, RIAZI M. Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system[J]. Energy & Fuels,2014, 28(11): 6820-6829.
[54] YANG J, DONG Z X, DONG M Z, YANG Z H, LIN M Q, ZHANG J, et al. Wettability alteration during low-salinity waterflooding and the relevance of divalent ions in this process[J]. Energy & Fuels, 2016, 30(1): 72-79.
[55] LIU F H, YANG H, WANG J Y, ZHANG M H, CHEN T, XU G X, et al. Salinity-dependent adhesion of model molecules of crude oil at quartz surface with different wettability[J]. Fuel,2018, 223: 401-407.
[56] TIE L, GUO Z G, LIU W M. pH-manipulated underwateroil adhesion wettability behavior on the micro/nanoscale semicircul a r s truc ture and rel a ted thermodynamic analysis[J]. ACS Applied Materials & Interfaces, 2015,7(19): 10641-10649.
[57] JADA A, SALOU M. Effects of the asphaltene and resin contents of the bitumens on the water-bitumen interface properties[J]. Journal of Petroleum Science and Engineering,2002, 33(1/2/3): 185-193.
[58] RAO D N. Wettabi l ity effects in thermal recovery operations[J]. SPE Reservoir Evaluation & Engineering, 1999,2(5): 420-430.
[59] WANG W, GUPTA A. Investigation of the effect of temperature and pressure on wettability using modified pendant drop method[C]. Dallas: Proceedings of the SPE Annual Technical Conference and Exhibition, 1995: 30544-MS.
[60] BURKE N E, HOBBS R E, KASHOU S F. Measurement and modeling of asphaltene precipitation[J]. Journal of Petroleum Technology, 1990, 42(11): 1440-1446.
[61] CHRISTENSON H K, LSRAELACHVILI J N, PASHLOY R M. Properties of capillary fluids at the microscopic level[J]. SPE Reservoir Engineering, 1987, 2(2): 155-165.
[62] ALQAM M H, ABU-KHAMSIN S A, SULTAN A S, OKASHA T M, YILDIZ H O. Effect of rock mineralogy and oil composition on wettability alteration and interfacial tension by brine and carbonated water[J]. Energy & Fuels, 2019, 33(3):1983-1989.
[63] 朱子涵. 砂岩储层岩石表面的亲水性与CO2 的影响[D]. 北京:中国石油大学(北京),2011. ZHU Z H. Hydrophilicity on the surface of the sandstone reservoir rock and the influence of CO2[D]. Beijing: China University of Petroleum (Beijing), 2011.
[64] DA SILVA R C R, MOHAMED R S, BANNWART A C. Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J]. Journal of Petroleum Science and Engineering, 2006, 51(1/2): 17-25.
[65] MATJIE R, ZHANG S, ZHAO Q, MABUZA N, BUNT J R. Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit[J]. Fuel, 2016, 181:573-578.
[66] TAN Y Q, GUO M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic[J]. Construction and Building Materials, 2013, 47: 254-260.
[67] MOHAMMADI A K, REZAEI M, MORADI S, NOWROUZI I, MOHAMMADI A H. Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding[J]. Journal of Molecular Liquids, 2017,248: 153-162.
[68] SEETHEPALLI A, ADIBHATLA B, MOHANTY K K. Wettability alteration during surfactant flooding of carbonate reservoirs[C]. Tulsa: Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, 2004: 89423-MS.
[69] GOLABI E, SEYEDEYN-AZAD F, AYATOLLAHI S. Chemical induced wettability alteration of carbonate reservoir rocks[J]. Iranian Journal of Chemical Engineering, 2009, 6(1): 66-73.
[70] JARRAHIAN K, SEIEDI O, SHEYKHAN M, SEFTI M V, AYATOLLAHI S. Wettability alteration of carbonate rocks by surfactants: a mechanistic study[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 410: 1-10.
[71] SHAHRI M P, SHADIZADEH S R, JAMIALAHMADI M. A new type of surfactant for enhanced oil recovery[J]. Petroleum Science and Technology, 2012, 30(6): 585-593.
[72] AHMADI M A, SHADIZADEH S R. Implementation of a high-performance surfactant for enhanced oil recovery from carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 110: 66-73.
[73] QI Z Y, WANG Y F, XU X L. Effects of interfacial tension reduction and wettability alteration on oil recovery by surfactant imbibition[J]. Advanced Materials Research, 2013,868: 664-668.
[74] AHMADI M A, ARABSAHEBI Y, SHADIZADEH S R, SHOKROLLAHZADEH BEHBAHANI S. Preliminary evaluation of mulberry leaf-derived surfactant on interfacial tension in an oil-aqueous system: EOR application[J]. Fuel,2014, 117(Part A): 749-755.
[75] AHMADI M A, GALEDARZADEH M, SHADIZADEH S R. Wettability alteration in carbonate rocks by implementing new derived natural surfactant: enhanced oil recovery applications[J].Transport in Porous Media, 2015, 106: 645-667.
[76] HOU B F, WANG Y F, HUANG Y. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants[J]. Applied Surface Science, 2015, 330: 56-64.
[77] WEI Y, BABADAGLI T. Alteration of interfacial properties by chemicals and nanomaterials to improve heavy oil recovery at elevated temperatures[J]. Energy & Fuels, 2017, 31(11):11866-11883.
[78] LIU Z Y, MENDIRATTA S, CHEN X, ZHANG J, LI Y Q. Amphiphilic-Polymer-Assisted hot water flooding toward viscous oil mobilization[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16552-16564.
[79] HUIBERS B M J, PALES A R, BAI L Y, LI C Y, MU L L, LADNER D, et al. Wettability alteration of sandstones by silica nanoparticle dispersions in light and heavy crude oil[J]. Journal of Nanoparticle Research, 2017, 19: 323.
[80] LI Y Y, DAI C L, ZHOU H D, WANG X K, LV W J, ZHAO M W. Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery[J]. Energy & Fuels, 2017, 32(1): 287-293.
[81] EHTESABI H, AHADIAN M M, TAGHIKHANI V, GHAZANFARI M H. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids[J]. Energy & Fuels, 2014, 28(1): 423-430.
[82] SUN X F, ZHANG Y Y, CHEN G P, LIU T L, REN D N, MA J Y, et al. Wettability of hybrid nanofluid-treated sandstone/heavy oil/brine systems: implications for enhanced heavy oil recovery potential[J]. Energy & Fuels, 2018, 32(11):11118-11135.
[83] STALDER A F, MELCHIOR T, MÜLLER M, SAGE D, BIU T, UNSER M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364(1/3): 72-81.
[84] 华朝. 砂岩油藏岩石表面亲水性及调控方法[D]. 北京:中国石油大学( 北京),2015. HUA Z. Water wettability of sandstone surface and its modification[D]. Beijing: China University of Petroleum(Beijing), 2015.
[85] UNGERER P, YIANNOURAKOU M, MAVROMARAS A, COLLELL J. Compositional modeling of crude oils using C10-C36 properties generated by molecular simulation[J]. Energy & Fuels, 2019, 33: 2967-2980.
[86] IWASE M, SUGIYAMA S, LIANG Y F, MASUDA Y, MORIMOTO M, MATSUOKA T, et al. Development of digital oil for heavy crude oil: molecular model and molecular dynamics simulations[J]. Energy & Fuels, 2018, 32(3):2781-2792.
[87] GUAN D, FENG S, ZHANG L Z, SHI Q, ZHAO S Q, XU C M. Mesoscale simulation for heavy petroleum system using structural unit and dissipative particle dynamics (SU-DPD) frameworks[J]. Energy & Fuels, 2019, 33(2): 1049-1060.
[88] MURGICH J, RODRÍGUEZ J M, ARAY Y. Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins[J]. Energy & Fuels, 1996, 10(1): 68-76.
[89] DUAN A J, XU C M, GAO J S, LIN S X, CHUNG K H. Molecular simulation for catalytic hydrotreatment of coker heavy gas oil derived from Athabasca bitumen[J]. Journal of Molecular Structure, 2005, 734(1/3): 89-97.
[90] TAKANOHASHI T, SATO S, TANAKA R. Structural relaxation behaviors of three different asphaltenes using MD calculations[J]. Petroleum Science and Technology, 2004,22(7/8): 901-914.
[91] VERSTRAE T E J J , SCHNONGS P, DULOT H, HUDEBINE D. Molecular reconstruction of heavy petroleum residue fractions[J]. Chemical Engineering Science, 2010, 65(1): 304-312.
[92] ZHU X Z, CHEN D Y, ZHANG Y, WU G Z. Insights into the oil adsorption and cyclodextrin extraction process on rough silica surface by molecular dynamics simulation[J]. The Journal of Physical Chemistry C, 2018, 122(5): 2997-3005.
[93] XIE W K, SUN Y Z, LIU H T. Atomistic investigation on the detachment of oil molecules from defective alumina surface[J]. Applied Surface Science, 2017, 426: 504-513.
[94] JIAN C Y, POOPARI M R, LIU Q X, ZERPA N, ZENG H B, TANG T. Reduction of water/oil interfacial tension by model asphaltenes: the governing role of surface concentration[J]. The Journal of Physical Chemistry. B,2016, 120(25): 5646-5654.
[95] MENG Q, CHEN D Y, WU G Z. Microscopic mechanisms for the dynamic wetting of a heavy oil mixture on a rough silica surface[J]. The Journal of Physical Chemistry C, 2018, 122(43):24977-24986.

相似文献/References:

[1]李鸿英 贾治渊 韩善鹏 韩方勇 吴浩 张劲军 白晓东 杨艳.高含水含蜡原油的粘壁特性试验[J].油气储运,2020,39(08):898.[doi:10.6047/j.issn.1000-8241.2020.08.008]
 LI Hongying,JIA Zhiyuan,HAN Shanpeng,et al.Test on wall-adhering behavior of high water-cut waxy crude oil[J].Oil & Gas Storage and Transportation,2020,39(12):898.[doi:10.6047/j.issn.1000-8241.2020.08.008]

备注/Memo

收稿日期:2020-03-19;修回日期:2021-10-26;编辑:刘朝阳
基金项目:国家自然科学基金资助项目“含蜡原油常温输送机理及流动改性方法研究”,51534007。
作者简介:吕杨,男,1994 年生,在读博士生,2018 年毕业于沈阳工业大学油气储运工程专业,现主要从事高含水易凝高黏原油低温集输凝油粘壁作用机理的研究工作。地址:北京市昌平区府学路18 号中国石油大学(北京),102249。电话:13718991124。Email:lvyangcup@163.com
通信作者:黄启玉,男,1969 年生,教授,博士生导师,2000 年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事油气储运长距离管输工艺和油气管道流动保障技术的研究工作。地址:北京市昌平区府学路18 号中国石油大学(北京),102249。电话:13601056862。Email:ppd@cup.edu.cn

更新日期/Last Update: 2021-12-25