[1]李西贵,滕霖,李卫东,等.管内障碍物位置对高压氢气泄漏自燃影响的数值模拟[J].油气储运,2021,40(11):1306-1313.[doi:10.6047/j.issn.1000-8241.2021.11.015]
 LI Xigui,TENG Lin,LI Weidong,et al.Numerical simulation of the effect of obstacle locations inside pipelines on spontaneous ignition resulted from high-pressure hydrogen leakage[J].Oil & Gas Storage and Transportation,2021,40(11):1306-1313.[doi:10.6047/j.issn.1000-8241.2021.11.015]
点击复制

管内障碍物位置对高压氢气泄漏自燃影响的数值模拟

参考文献/References:


[1] SHEN X B, ZHANG C, XIU G L, ZHU H Y. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct[J]. Energy, 2019, 176: 265-271.
[2] CHEN W H, LU C Y, TRAN K Q, LIN Y L, NAQVI S R. A new design of catalytic tube reactor for hydrogen production from ethanol steam reforming[J]. Fuel, 2020, 281: 118746.
[3] XIAO H H, DUAN Q L, SUN J H. Premixed flame propagation in hydrogen explosions[J]. Renewable and Sustainable Energy Reviews, 2018, 81(Part 2): 1988-2001.
[4] 谢萍,伍奕,李长俊,贾文龙,张皓,吴瑕. 混氢天然气管道输送 技术研究进展[J]. 油气储运,2021,40(4):361-370. XIE P, WU Y, LI C J, JIA W L, ZHANG H, WU X. Research progress on pipeline transportation technology of hydrogen-mixed natural gas[J]. Oil & Gas Storage and Transportation, 2021, 40(4): 361-370.
[5] 徐东,刘岩,李志勇,丁世强,陈树宏. 氢能开发利用经济性研究 综述[J]. 油气与新能源,2021,33(2):50-56. XU D, LIU Y, LI Z Y, DING S Q, CHEN S H. A costefficiency review of hydrogen energy exploitation[J]. Petroleum Planning & Engineering, 2021, 33(2): 50-56.
[6] GU X C, ZHANG J D, PAN Y, NI Y Q, MA C M, ZHOU W, et al. Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field[J]. Safety Science, 2020, 122: 104532.
[7] 沈晓波,章雪凝,刘海峰. 高压氢气泄漏相关安全问题研究与进 展[J]. 化工学报,2021,72(3):1217-1229. SHEN X B, ZHANG X N, LIU H F. Research and progress on safety issues related to high-pressure hydrogen leakage[J]. CIESC Journal, 2021, 72(3): 1217-1229.
[8] ZENG Q, DUAN Q L, LI P, ZHU H Y, SUN D X, SUN J H. An experimental study of the effect of 2.5% methane addition on self-ignition and flame propagation during high-pressure hydrogen release through a tube[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3381-3390.
[9] WOLANSKI P, WOJCICKI S. Investigation into the mechanism of the diffusion ignition of a combustible gas flowing into an oxidizing atmosphere[J]. Proceedings of the Combustion Institute. 1972, 14: 1217-1223.
[10] ASTBURY G R, HAWKSWORTH S J. Spontaneous ignition of hydrogen leaks: a review of postulated mechanisms[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2178-2185.
[11] XU B P, EL HIMA L, WEN J X, DEMBELE S, TAM V H Y, DONCHEV T. Numerical study on the spontaneous ignition of pressurized hydrogen release through a tube into air[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 205-213.
[12] MORII Y, TERASHIMA H, KOSHI M, SHIMIZU T. Numerical study of the effect of obstacles on the spontaneous ignition of high-pressure hydrogen[J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 92-99.
[13] KANEKO W, ISHII K. An experimental study on the mechanism of self-ignition of high-pressure hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7374-7379.
[14] YAMASHITA K, SABURI T, WADA Y, ASAHARA M, MOGI T, HAYASHI A K. Visualization of spontaneous ignition under controlled burst pressure[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7755-7760.
[15] KIM Y R, LEE H J, KIM S, JEUNG I S. A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2057-2064.
[16] 汪志雷,潘旭海,蒋军成. 高压氢气泄漏自燃研究进展[J]. 南京 工业大学学报(自然科学版),2019,41(5):656-663. WANG Z L, PAN X H, JIANG J C. Research challenges in high-pressure hydrogen spontaneous ignition[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2019, 41(5): 656-663.
[17] DUAN Q L, XIAO H H, GAO W, GONG L, WANG Q S, SUN J H. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air[J]. Fuel, 2016, 181: 811-819.
[18] LEE H J, KIM Y R, KIM S H, JEUNG I S. Experimental investigation on the self-ignition of pressurized hydrogen released by the failure of a rupture disk through tubes[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2351-2358.
[19] DUAN Q L, XIAO H H, GAO W, GONG L, SUN J H. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section[J]. Journal of Hazardous Materials, 2016, 320: 18-26.
[20] GONG L, DUAN Q L, SUN Q, JIN K Q, SUN J H. Effects of the geometry of downstream pipes with different angles on the shock ignition of high-pressure hydrogen during its sudden expansion[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8382-8391.
[21] PAN X H, WANG Q Y, YAN W Y, JIANG Y M, WANG Z L, XU X D, et al. Experimental study on pressure dynamics and self-ignition of pressurized hydrogen flowing into the L-shaped tubes[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5028-5038.
[22] WANG Q Y, PAN X H, JIANG Y M, WANG Z L, LI Y Y, TA L, et al. Experimental investigation on spontaneous ignition caused by pressurized hydrogen suddenly release into an S-shaped tube[J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104313.
[23] WANG Z L, PAN X H, JIANG Y M, WANG Q Y, LI Y Y, XIAO J J, et al. Experimental study on shock wave propagation and spontaneous ignition induced by high-pressure hydrogen suddenly released into T-shaped tubes[J]. Safety Science, 2020, 127: 104694.
[24] GOLOVASTOV S V , B OCHARNIKOV V M , SAMOILOVA A A. Experimental investigation of influence of methane additions on spontaneous self-ignition of pulsed jet of hydrogen[J]. International Journal of Hydrogen Energy, 2016, 41(30): 13322-13328.
[25] GONG L, DUAN Q L, LIU J L, LI M, JIN K Q, SUN J H. Experimental investigation on effects of CO2 additions on spontaneous ignition of high-pressure hydrogen during its sudden release into a tube[J]. International Journal of Hydrogen Energy, 2019, 44(13): 7041-7048.
[26] GONG L, DUAN Q L, LIU J L, LI M, LI P, JIN K Q, et al. Spontaneous ignition of high-pressure hydrogen during its sudden release into hydrogen/air mixtures[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23558-23567.
[27] RUDY W, DABKOWSKI A, TEODORCZYK A. Experimental and numerical study on spontaneous ignition of hydrogen and hydrogen-methane jets in air[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20388-20395.
[28] RUDY W, TEODORCZYK A, WEN J. Self-ignition of hydrogen-nitrogen mixtures during high-pressure release into air[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7340-7352.
[29] SMIRNOV N N, PENYAZKOV O G, SEVROUK K L, NIKITIN V F, STAMOV L I, TYURENKOVA V V. Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber[J]. Acta Astronautica, 2018, 149: 77-92.
[30] SMIRNOV N N, PENYAZKOV O G, SEVROUK K L, NIKITIN V F, STAMOV L I, TYURENKOVA V V. Nonequilibrium processes in meta-stable media[J]. The European Physical Journal E, Soft Matter, 2018, 41(5): 1-22.
[31] ZHONG L J, ZHANG X J, ZHOU L, LIU C W, WEI H Q. Direct numerical simulation of flame propagation and deflagration to detonation transition in confined space with different perforated plate positions[J/OL]. Combustion Science and Technology, 2020: 1-28 (2020-06-22)
[2021-03- 12]. https://doi.org/10.1080/00102202.2020.1770240. DOI: 10.1080/00102202.2020.1770240.
[32] ZHOU L, ZHONG L J, ZHAO J F, PAN J Y, XU Z L, WEI H Q. Flame propagation and combustion phenomena in a confined space with the perforated plate at different positions[J]. Combustion Science and Technology, 2020, 192(3): 493-512.
[33] LI P, DUAN Q L, GONG L, JIN K Q, CHEN J Y, SUN J H. Effects of obstacles inside the tube on the shock wave propagation and spontaneous ignition of high-pressure hydrogen[J]. Fuel, 2019, 236: 1586-1594.
[34] LI P, DUAN Q L, JIN K Q, ZENG Q, SUN J H. Experimental study on shock waves, spontaneous ignition, and flame propagation produced by pressurized hydrogen release through tubes with varying obstacle location[J]. Fuel, 2021, 290: 120093.
[35] 李萍. 管道几何结构对高压氢气泄漏自燃影响机理实验研 究[D]. 合肥:中国科学技术大学,2019. LI P. Experimental study on effect of pipe geometry on impact mechanism for spontaneous ignition of high-pressure hydrogen release[D]. Hefei: University of Science and Technology of China, 2019.
[36] ANSYS Inc.. ANSYS fluent theory guide[M]. Canonsburg: ANSYS Inc., 2011: 724-746.
[37] CONAIRE M ?, CURRAN H J, SIMMIE J M, PITZ W J, WESTBROOK C K. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 2004, 36(11): 603-622.
[38] XU X D, JIANG J, JIANG Y M, WANG Z L, WANG Q Y, YAN W Y, et al. Spontaneous ignition of high-pressure hydrogen and boundary layer characteristics in tubes[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20515-20524.
[39] 段强领. 高压氢气泄漏自燃机理及其火焰传播特性实验研 究[D]. 合肥:中国科学技术大学,2016. DUAN Q L. Experimental study of spontaneous ignition and subsequent flame propagation of high-pressure hydrogen release[D]. Hefei: University of Science and Technology of China, 2016.

相似文献/References:

[1]彭忍社 尹旭东 李庞. 输气管道法兰泄漏在线治理技术方案[J].油气储运,2012,31(12):917.[doi:10.6047/j.issn.1000-8241.2012.12.011]
 Peng Renshe,Yin Xudong,Li Pang.Technical approach to on-line control of flange leakage of gas pipelines[J].Oil & Gas Storage and Transportation,2012,31(11):917.[doi:10.6047/j.issn.1000-8241.2012.12.011]
[2]陈健峰,税碧垣,沈煜欣,等.储罐与工艺管道的完整性管理[J].油气储运,2011,30(04):259.[doi:10.6047/j.issn.1000-8241.2011.04.005]
 Chen Jianfeng,Shui Biyuan,Shen Yuxin,et al.Integrity management of storage tank and process pipeline[J].Oil & Gas Storage and Transportation,2011,30(11):259.[doi:10.6047/j.issn.1000-8241.2011.04.005]
[3]项小强,戴联双,曹涛,等.输油管道泄漏液池的蒸气云扩散模型[J].油气储运,2011,30(05):334.[doi:10.6047/j.issn.1000-8241.2011.05.003]
 Xiang Xiaoqiang,Dai Lianshuang,Cao Tao,et al.Vapor cloud dispersion model for leakage pool of oil pipeline[J].Oil & Gas Storage and Transportation,2011,30(11):334.[doi:10.6047/j.issn.1000-8241.2011.05.003]
[4]桑博,兰惠清,余学立,等.燃气管道泄漏过程模型的研究进展[J].油气储运,2011,30(08):608.[doi:10.6047/j.issn.1000-8241.2011.08.003]
 Sang Bo,Lan Huiqing,Yu Xueli,et al.The research progress of gas pipeline leak model[J].Oil & Gas Storage and Transportation,2011,30(11):608.[doi:10.6047/j.issn.1000-8241.2011.08.003]
[5]赵祥迪,袁纪武,翟良云,等.基于CFD 的液态烃罐区泄漏爆炸事故后果模拟[J].油气储运,2011,30(08):634.[doi:10.6047/j.issn.1000-8241.2011.08.009]
 Zhao Xiangdi,Yuan Jiwu,Zhai Liangyun,et al.Leakage explosion consequence simulation based on CFD for liquid hydrocarbon tankfarms[J].Oil & Gas Storage and Transportation,2011,30(11):634.[doi:10.6047/j.issn.1000-8241.2011.08.009]
[6]李朝阳,马贵阳,刘亮.埋地输油管道泄漏油品扩散模拟[J].油气储运,2011,30(09):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
 Li Zhaoyang,Ma Guiyang,Liu Liang,et al.Diffusion simulation on leaked oil for buried pipelines[J].Oil & Gas Storage and Transportation,2011,30(11):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
[7]支焕,蒋华义,高志亮,等.卫星监测技术在输油管道泄漏中的应用[J].油气储运,2011,30(12):957.[doi:10.6047/j.issn.1000-8241.2011.12.021]
 Zhi Huan,Jiang Huayi,Gao Zhiliang,et al.Satellite monitoring technology for leakage detection of oil pipeline[J].Oil & Gas Storage and Transportation,2011,30(11):957.[doi:10.6047/j.issn.1000-8241.2011.12.021]
[8]周宁 潘东 冷明 赵会军 刘晅亚.油库罐区危险化学品的泄漏扩散实验[J].油气储运,2012,31(4):263.[doi:10.6047/j.issn.1000-8241.2012.04.006]
 Zhou Ning,Pan Dong,Leng Ming,et al.Leakage and diffusion experiment of hazardous materials in oil tankfarm[J].Oil & Gas Storage and Transportation,2012,31(11):263.[doi:10.6047/j.issn.1000-8241.2012.04.006]
[9]杜曼 赵东风 孟亦飞.长输天然气管道泄漏事故后果评价方法与应用[J].油气储运,2012,31(5):340.[doi:10.6047/j.issn.1000-8241.2012.05.005]
 Du Man,Zhao Dongfeng,Meng Yifei.Evaluation method of leakage consequence for long-distance gas pipeline and its application[J].Oil & Gas Storage and Transportation,2012,31(11):340.[doi:10.6047/j.issn.1000-8241.2012.05.005]
[10]张静,樊建春,温东,等.基于故障树的油气管道泄漏模糊可靠性评估[J].油气储运,2010,29(6):401.[doi:10.6047/j.issn.1000-8241.2010.06.001]
 Zhang Jing,Fan Jianchun,Wen Dong.Fuzzy Reliability Evaluation on Oil and Gas Pipeline Leakage Based on Fault Tree[J].Oil & Gas Storage and Transportation,2010,29(11):401.[doi:10.6047/j.issn.1000-8241.2010.06.001]

备注/Memo

收稿日期:2021-04-28;修回日期:2021-08-03;编辑:张静楠
作者简介:李西贵,男,1997 年生,在读硕士生,2020 年毕业于齐鲁工业大学过程装备与控制工程专业,现主要从事氢能安全方向的研究工作。地址:福建省福州市福州大学城乌龙江北大道2 号,350108。电话:15314105529。Email:xiguili1998@163.com
通信作者:滕霖,男,1991 年生,副研究员,2019 年博士毕业于中国石油大学(华东)油气储运工程专业,现主要从事油气储运安全方向的研究工作。地址:福建省福州市福州大学城乌龙江北大道2 号,350108。电话:18266635171。Email:tenglin@fzu.edu.cn

更新日期/Last Update: 2021-11-25