[1]张曦月,胡瑾秋,张来斌,等.基于CW-AGNES的油气储运企业事故风险因素文本泛化方法[J].油气储运,2021,40(11):1242-1249.[doi:10.6047/j.issn.1000-8241.2021.11.006]
 ZHANG Xiyue,HU Jinqiu,ZHANG Laibin,et al.Textual generalization method of accident risk factors in oil & gas storage and transportation enterprises based on CW-AGNES[J].Oil & Gas Storage and Transportation,2021,40(11):1242-1249.[doi:10.6047/j.issn.1000-8241.2021.11.006]
点击复制

基于CW-AGNES的油气储运企业事故风险因素文本泛化方法

参考文献/References:


[1] 田依林,李星. 基于事理图谱的新冠肺炎疫情网络舆情演化路 径分析[J]. 情报理论与实践,2021,44(3):76-83. TIAN Y L, LI X. Analysis on the evolution path of COVID-19 network public opinion based on the event evolutionary graph[J]. Information Studies: Theory & Application, 2021, 44(3): 76-83.
[2] 单晓红,庞世红,刘晓燕,杨娟. 基于事理图谱的网络舆情事件预 测方法研究[J]. 情报理论与实践,2020,43(10):165-170,156. SHAN X H, PANG S H, LIU X Y, YANG J. Research on Internet public opinion event prediction method based on event evolution graph[J]. Information Studies: Theory & Application, 2020, 43(10): 165-170, 156.
[3] GIRJU R. Toward social causality: an analysis of interpersonal relationships in online blogs and forums[C]. Washington D C: The Fourth International AAAI Conference on Weblogs and Social Media, 2010: 66-73.
[4] 曹高辉,任卫强,丁恒. 面向限定域的深度语义事件泛化研究[J]. 情报学报,2020,39(8):863-871. CAO G H, REN W Q, DING H. Domain-oriented deep semantic event generalization[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(8): 863-871.
[5] MEHTA V, BAWA S, SINGH J. Stamantic clustering: combining statistical and semantic features for clustering of large text datasets[J]. Expert Systems with Applications, 2021, 174: 114710.
[6] 吴德平,华钢. 基于Word2Vec 词嵌入和聚类模型的安全生产事 故文本案例分类[J]. 计算机系统应用,2021,30(1):141-145. WU D P, HUA G. Text case classification of safety production accidents based on Word2Vec word embedding and clustering model[J]. Computer Systems & Applications, 2021, 30(1): 141-145.
[7] 单晓红,庞世红,刘晓燕,杨娟. 基于事理图谱的网络舆情演化路 径分析——以医疗舆情为例[J]. 情报理论与实践,2019,42(9): 99-103,85. SHAN X H, PANG S H, LIU X Y, YANG J. Analysis on the evolution path of Internet public opinions based on the event evolution graph: taking medical public opinions as an example[J]. Information Studies: Theory & Application, 2019, 42(9): 99-103, 85.
[8] 马新宇,范意兴,郭嘉丰,张儒清,苏立新,程学旗. 关于短文本 匹配的泛化性和迁移性的研究分析[J/OL]. 计算机研究与发 展:1-9.(2021-03-25)
[2021-05-21]. http://kns.cnki.net/kcms/ detail/11.1777.TP.20210323.1624.007.html. MA X Y, FAN Y X, GUO J F, ZHANG R Q, SU L X, CHENG X Q. An empirical investigation of generalization and transfer in short text matching[J/OL]. Journal of Computer Research and Development: 1-9. (2021-03-25)
[2021-05-21]. http://kns.cnki. net/kcms/detail/11.1777.TP.20210323.1624.007.html.
[9] BOWMAN S R, ANGELI G, POTTS C, MANNING C D. A large annotated corpus for learning natural language inference[C]. Lisbon: 2015 Conference on Empirical Methods in Natural Language Processing, 2015: 632-642.
[10] BAJAJ P, CAMPOS D, CRASWELL N, DENG L, GAO J F, LIU X D, et al. MS Marco: a human generated machine reading comprehension dataset[C]. Barcelona: 30th Conference on Neural Information Processing Systems (NIPS 2016), 2016: 1-11.
[11] HUANG J Z, ZHOU M, YANG D. Extracting chatbot knowledge from online discussion forums[C]. Hyderabad: 20th International Joint Conference on Artificial Intelligence, 2007: 423-428.
[12] LI B L, LIU Y D, RAM A, GARCIA E V, AGICHTEIN E. Exploring question subjectivity prediction in community QA[C]. Singapore: 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2008: 735-736.
[13] CHEN D Q, FISCH A, WESTON J, BORDES A. Reading Wikipedia to answer open-domain questions[C]. Vancouver: 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017: 1870-1879.
[14] DEVLIN J, CHANG M W, LEE K, TOUTANOVA K. Bert: pre-training of deep bidirectional transformers for language understanding[C]. Minneapolis: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[15] WANG A, SINGH A, MICHAEL J, HILL F, LEVY O, BOWMAN S. Glue: a multi-task benchmark and analysis platform for natural language understanding[C]. Brussels: 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2018: 353-355.
[16] 李舟军,范宇,吴贤杰. 面向自然语言处理的预训练技术研究 综述[J]. 计算机科学,2020,47(3):162-173. LI Z J, FAN Y, WU X J. Survey of natural language processing pre-training techniques[J]. Computer Science, 2020, 47(3): 162-173.
[17] 汪明静. 改进的深度学习算法在中文文本分类中的应用[D]. 合肥:安徽大学,2020. WANG M J. Application of improved deep learning algorithm in Chinese text classification[D]. Hefei: Anhui University, 2020.
[18] 张亚男,冯建文. 基于混合聚类的微博热点话题发现方法[J]. 杭州电子科技大学学报(自然科学版),2018,38(1):59-64,80. ZHANG Y N, FENG J W. Micro-blog hot topics detection method based on hybrid clustering[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2018, 38(1): 59-64, 80.
[19] 董安国,张倩,刘洪超,梁苗苗. 基于TSNE 和多尺度稀疏自编 码的高光谱图像分类[J]. 计算机工程与应用,2019,55(21): 176-181. DONG A G, ZHANG Q, LIU H C, LIANG M M. Hyperspectral image classification based on TSNE and multiscale sparse auto-encoder[J]. Computer Engineering and Applications, 2019, 55(21): 176-181.
[20] 张淑清,段晓宁,张立国,姜安琦,姚玉永,刘勇,等. Tsne 降维 可视化分析及飞蛾火焰优化ELM 算法在电力负荷预测中应 用[J]. 中国电机工程学报,2021,41(9):3120-3129. ZHANG S Q, DUAN X N, ZHANG L G, JIANG A Q, YAO Y Y, LIU Y, et al. Tsne dimension reduction visualization analysis and moth flame optimized ELM algorithm applied in power load forecasting[J]. Proceedings of the CSEE, 2021, 41(9): 3120-3129.

相似文献/References:

[1]刘丽霞 詹春秋 徐昌学 陶勇寅.应急管理评价方法在油气储运企业的应用[J].油气储运,2012,31(10):771.[doi:10.6047/j.issn.1000-8241.2012.10.013]
 Liu Lixia,Zhan Chunqiu,Xu Changxue,et al. Application of emergency management evaluation method in oil & gas storage and transportation enterprises[J].Oil & Gas Storage and Transportation,2012,31(11):771.[doi:10.6047/j.issn.1000-8241.2012.10.013]

备注/Memo

收稿日期:2021-06-01;修回日期:2021-09-28;编辑:刘朝阳
基金项目:国家重点研发计划资助项目“复杂油气智能钻井理论与方法”,2019YFA0708304;国家自然科学基金资助项目“信息安全威胁下油气智慧管道系统失效新型致灾机理与早期预警”,52074323;中国石油大学(北京)科研基金资助项目“海洋油气管道系统安全与完整性关键技术研究”,ZX20200137。
作者简介:张曦月,女,1996 年生,助理工程师,2021 年硕士毕业于中国石油大学(北京)安全科学与工程专业,现主要从事安全管理文本数据事故预防与风险控制研究。地址:北京市昌平区府学路18号,102249。电话:18310093250。Email:zhangxiyue0518@163.com
通信作者:胡瑾秋,女,1983 年生,教授,博士生导师,2010 年博士毕业于中国石油大学(北京)机械电子工程专业,现主要从事油气生产复杂系统安全预警技术、油气装备监测预警大数据科学与工程研究。地址:北京市昌平区府学路18 号,102249。电话:13401021372。Email:hujq@cup.edu.cn

更新日期/Last Update: 2021-11-25