[1]杨飞,王邦文,李传宪,等.海上溢油处理用超疏水-超亲油三维弹性多孔材料研究进展[J].油气储运,2021,40(11):1210-1219.[doi:10.6047/j.issn.1000-8241.2021.11.002]
 YANG Fei,WANG Bangwen,LI Chuanxian,et al.Research progress of superhydrophobic-superoleophilic 3D elastic porous materials applied to the marine oil spill treatment[J].Oil & Gas Storage and Transportation,2021,40(11):1210-1219.[doi:10.6047/j.issn.1000-8241.2021.11.002]
点击复制

海上溢油处理用超疏水-超亲油三维弹性多孔材料研究进展

参考文献/References:


[1] 张创. 中国原油进口贸易的国际市场势力研究[D]. 南昌:江西 财经大学,2020. ZHANG C. Research on the international market power of China’s crude oil import trade[D]. Nanchang: Jiangxi University of Finance and Economics, 2020.
[2] 张颖,董国强,雷莹,何湛,张璇,刘鹏刚. 基于DEMATEL 与逻 辑树的海底原油管道泄漏风险分析[J]. 安全与环境学报,2020, 20(5):1690-1694. ZHANG Y, DONG G Q, LEI Y, HE Z, ZHANG X, LIU P G. Analysis for the pipeline leakage risk of the submarine crude oil based on the DEMATEL and logical tree[J]. Journal of Safety and Environment, 2020, 20(5): 1690-1694.
[3] 彭勃,汪元南,廖树妹,蔡素燕. 海上溢油应急处置技术研究进 展[J]. 广东化工,2019,46(7):161-162,184. PENG B, WANG Y N, LIAO S M, CAI S Y. Review on emergency disposal technology of marine oil spill[J]. Guangdong Chemical Industry, 2019, 46(7): 161-162, 184.
[4] 董云龙. 海上噩梦历数全球十大油轮泄漏事故[J]. 石油知识, 2018(4):24-25. DONG Y L. Sea nightmare records the world’s top ten oil tanker leakage accidents[J]. Petroleum Knowledge, 2018(4): 24-25.
[5] SCHROPE M. Oil spill: deep wounds[J]. Nature, 2011, 472(7342): 152-154.
[6] BULLOCK R J, PERKINS R A, AGGARWAL S. In-situ burning with chemical herders for Arctic oil spill response: metaanalysis and review[J]. Science of the Total Environment, 2019, 675: 705-716.
[7] PRINCE R C. Oil spill dispersants: boon or bane?[J]. Environmental Science & Technology, 2015, 49(11): 6376-6384.
[8] XUE J L, YU Y, BAI Y, WANG L P, WU Y A. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review[J]. Current Microbiology, 2015, 71(2): 220-228.
[9] CRISAFI F, GENOVESE M, SMEDILE F, RUSSO D, CATALFAMO M, YAKIMOV M, et al. Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): a comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies[J]. Marine Pollution Bulletin, 2016, 106(1/2): 119-126.
[10] SOCOLOFSKY S A, GROS J, NORTH E, BOUFADEL M C, PARKERTON T F, ADAMS E E. The treatment of biodegradation in models of sub-surface oil spills: a review and sensitivity study[J]. Marine Pollution Bulletin, 2019, 143: 204-219.
[11] 李政,顾贵洲. 低温地区陆地泄漏原油的生物降解研究进展[J]. 石油化工高等学校学报,2018,31(2):1-7. LI Z, GU G Z. Research progress on biodegradation mechanism of land-based petroleum spills in cold environments[J]. Journal of Petrochemical Universities, 2018, 31(2): 1-7.
[12] RAJ K G, JOY P A. Coconut shell based activated carbon-iron oxide magnetic nanocomposite for fast and efficient removal of oil spills[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2068-2075.
[13] GUAN Y H, CHENG F Q, PAN Z H. Superwetting polymeric three dimensional (3D) porous materials for oil/water separation: a review[J]. Polymers, 2019, 11(5): 806.
[14] ZHANG T, LI Z D, LYU Y, LIU Y, YANG D Y, LI Q R, et al. Recent progress and future prospects of oil-absorbing materials[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1282-1295.
[15] GUPTA R K, DUNDERDALE G J, ENGLAND M W, HOZUMI A. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058.
[16] 丁文刚,刘琳,杜晓霞,章宝玲,杨国威,吴广,等. 海上井下油 水分离旋流器结构设计及优化研究[J]. 石油机械,2020, 48(6):69-76. DING W G, LIU L, DU X X, ZHANG B L, YANG G W, WU G, et al. Structure design and optimization of offshore downhole oil-water separation hydrocyclone[J]. China Petroleum Machinery, 2020, 48(6): 69-76.
[17] LEE C H, TIWARI B, ZHANG D Y, YAP Y K. Water purification: oil-water separation by nanotechnology and environmental concerns[J]. Environmental Science: Nano, 2017, 4(3): 514-525.
[18] GUPTA S, TAI N H. Carbon materials as oil sorbents: a review on the synthesis and performance[J]. Journal of Materials Chemistry A, 2016, 4(5): 1550-1565.
[19] 孙晓艳,俞莉红,王鑫,高文元. 海面无机吸油材料的研究进 展[J]. 中国陶瓷工业,2020,27(4):24-29. SUN X Y, YU L H, WANG X, GAO W Y. Research progress of inorganic oil-absorbing materials on sea surface[J]. China Ceramic Industry, 2020, 27(4): 24-29.
[20] 陈国晶,张智嘉,李万利. 微球类高吸油材料的研究进展[J]. 现 代化工,2021,41(7):90-94. CHEN G J, ZHANG Z J, LI W L. Research progress of microsphere high oil absorption materials[J]. Modern Chemical Industry, 2021, 41(7): 90-94.
[21] MIRSHAHGHASSEMI S, CAI B, LEAD J R. Evaluation of polymer-coated magnetic nanoparticles for oil separation under environmentally relevant conditions: effect of ionic strength and natural organic macromolecules[J]. Environmental Science: Nano, 2016, 3(4): 780-787.
[22] YONG J L, HUO J L, CHEN F, YANG Q, HOU X. Oil/water separation based on natural materials with super-wettability: recent advances[J]. Physical Chemistry Chemical Physics, 2018, 20(39): 25140-25163.
[23] VLAEV L, PETKOV P, DIMITROV A, GENIEVA S. Cleanup of water polluted with crude oil or diesel fuel using rice husks ash[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(6): 957-964.
[24] 黄彪,高尚愚. 木质炭化物高效开发利用研究综述[J]. 世界林 业研究,2004,17(2):31-33. HUANG B, GAO S Y. Review on high effective utilizations of wood charcoal[J]. World Forestry Research, 2004, 17(2): 31-33.
[25] 潘奕雯,薛晨阳,李晨希,吴俊敏,姜慧,郑丽娜. 天然吸油材料 的改性机制及研究进展[J]. 农村科学实验,2019(12):100-102. PAN Y W, XUE C Y, LI C X, WU J M, JIANG H, ZHENG L N. Modification mechanism and research progress of natural oil absorbing materials[J]. Scientific Experiment in Countryside, 2019(12): 100-102.
[26] 景旭东,林海琳,阎杰. 秸秆纤维素吸油材料的研究进展[J]. 材 料导报,2015,29(19):50-54. JING X D, LIN H L, YAN J. Research progress of straw cellulose oil-absorbtion materials[J]. Materials Review, 2015, 29(19): 50-54.
[27] NISHINO T, MEGURO M, NAKAMAE K, MATSUSHITA M, UEDA Y. The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323.
[28] 李文涛,雍佳乐,杨青,陈烽,方瑶,侯洵. 基于特殊润湿性材料 的油水分离[J]. 物理化学学报,2018,34(5):456-475. LI W T, YONG J L, YANG Q, CHEN F, FANG Y, HOU X. Oil-water separation based on the materials with special wettability[J]. Acta Physico-Chimica Sinica, 2018, 34(5): 456-475.
[29] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[30] GAO X F, JIANG L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36-36.
[31] ZHANG Y L, XIA H, KIM E, SUN H B. Recent developments in superhydrophobic surfaces with unique structural and functional properties[J]. Soft Matter, 2012, 8(44): 11217-11231.
[32] TUTEJA A, CHOI W, MA M L, MABRY J M, MAZZELLA S A, RUTLEDGE G C, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622.
[33] XUE Z X, LIU M J, JIANG L. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B - Polymer Physics, 2012, 50(17): 1209-1224.
[34] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
[35] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994.
[36] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[37] MARMUR A. From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials[J]. Langmuir, 2008, 24(14): 7573-7579.
[38] NOSONOVSKY M, BHUSHAN B. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions[J]. Langmuir, 2008, 24(4): 1525-1533.
[39] BORMASHENKO E. Comment on water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to- Cassie transition[J]. Langmuir, 2011, 27(20): 12769-12770.
[40] SUDEEPTHI A, YEO L, SEN A K. Cassie-Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves[J]. Applied Physics Letters, 2020, 116(9): 093704.
[41] WU H P, YANG Z, CAO B B, ZHANG Z, ZHU K, WU B B, et al. Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures[J]. Langmuir, 2017, 33(1): 407-416.
[42] BORMASHENKO E, POGREB R, WHYMAN G, ERLICH M. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?[J]. Langmuir, 2007, 23(12): 6501-6503.
[43] LAFUMA A, QU?R? D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7): 457-460.
[44] JUNG Y C, BHUSHAN B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity[J]. Langmuir, 2009, 25(24): 14165-14173.
[45] BROWN P S, BHUSHAN B. Designing bioinspired superoleophobic surfaces[J]. APL Materials, 2016, 4(1): 015703.
[46] JOY J, ABRAHAM J, SUNNY J, MATHEW J, GEORGE S C. Hydrophobic, superabsorbing materials from reduced graphene oxide/MoS2 polyurethane foam as a promising sorbent for oil and organic solvents[J]. Polymer Testing, 2020, 87: 106429.
[47] YU T L, HALOUANE F, MATHIAS D, BARRAS A, WANG Z W, LV A Q, et al. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification[J]. Chemical Engineering Journal, 2020, 384: 123339.
[48] QIU S M, LI Y F, LI G R, ZHANG Z Y, LI Y J, WU T. Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5560-5567.
[49] WANG H Y, WANG E Q, LIU Z J, GAO D, YUAN R X, SUN L Y, et al. A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil-water separation through a chemical fabrication[J]. Journal of Materials Chemistry A, 2014, 3(1): 266-273.
[50] LIU C, FANG Y F, MIAO X M, PEI Y B, YAN Y, XIAO W J, et al. Facile fabrication of superhydrophobic polyurethane sponge towards oil-water separation with exceptional flameretardant performance[J]. Separation and Purification Technology, 2019, 229: 115801.
[51] 王邦文. 聚氨酯基超疏水海绵的制备及其油水分离应用研 究[D]. 青岛:中国石油大学(华东), 2021. WANG B W. P r epar a t i on o f polyur e thane b a s ed superhydrophobic sponge and its application in oil-water separation[D]. Qingdao: China University of Petroleum (East China), 2021.
[52] ZHANG X F, SONG L, CHEN X X, WANG Y Q, FENG Y, YAO J F. Zirconium ion modified melamine sponge for oil and organic solvent cleanup[J]. Journal of Colloid and Interface Science, 2020, 566: 242-247.
[53] ZHANG C, LI Y L, SUN S, KALULU M L, WANG Y, ZHOU X, et al. Novel magnetic and flame-retardant superhydrophobic sponge for solar-assisted high-viscosity oil/water separation[J]. Progress in Organic Coatings, 2020, 139: 105369.
[54] WU X W, LEI Y G, LI S H, HUANG J Y, TENG L, CHEN Z, et al. Photothermal and joule heating-assisted thermal management sponge for efficient cleanup of highly viscous crude oil[J]. Journal of Hazardous Materials, 2021, 403: 124090.
[55] LI L X, HU T, YANG Y F, ZHANG J P. Strong, compressible, bendable and stretchable silicone sponges by solvent-controlled hydrolysis and polycondensation of silanes[J]. Journal of Colloid and Interface Science, 2019, 540: 554-562.
[56] WANG X Y, LU Y, CARMALT C J, PARKIN I P, ZHANG X. Multifunctional porous and magnetic silicone with high elasticity, durability, and oil-water separation properties[J]. Langmuir, 2018, 34(44): 13305-13311.
[57] WANG T T, WANG H, WANG T T, XU J, KE Q P. Significantly improving strength and oil-adsorption performance of regular porous polydimethylsiloxane via soft template approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572: 10-17.
[58] CHEN N, PAN Q M. Versatile fabrication of ultralight magnetic foams and application for oil-water separation[J]. ACS Nano, 2013, 7(8): 6875-6883.
[59] GUI X C, LI H B, WANG K L, WEI J Q, JIA Y, LI Z, et al. Recyclable carbon nanotube sponges for oil absorption[J]. Acta Materialia, 2011, 59(12): 4798-4804.
[60] GUI X C, ZENG Z P, LIN Z Q, GAN Q M, XIANG R, ZHU Y, et al. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5845-5850.
[61] WANG C C, YANG S D, MA Q, JIA X, MA P C. Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds[J]. Carbon, 2017, 118: 765-771.
[62] CHEN T, LI M X, ZHOU L, DING X B, LIN D J, DUAN T, et al. Bio-inspired biomass-derived carbon aerogels with superior mechanical property for oil-water separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16): 6458-6465.
[63] LU Y Q, WANG Y, LIU L J, YUAN W Z. Environmentalfriendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials[J]. Carbohydrate Polymers, 2017, 173: 422-430.
[64] PIRZADA T, ASHRAFI Z, XIE W Y, KHAN S A. Cellulose silica hybrid nanofiber aerogels: from sol-gel electrospun nanofibers to multifunctional aerogels[J]. Advanced Functional Materials, 2020, 30(5): 1907359.
[65] LI Z D, ZHONG L, ZHANG T, QIU F X, YUE X J, YANG D Y. Sustainable, flexible, and superhydrophobic functionalized cellulose aerogel for selective and versatile oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9984-9994.
[66] HU J, ZHU J D, GE S Z, JIANG C W, GUO T Y, PENG T P, et al. Biocompatible, hydrophobic and resilience graphene/ chitosan composite aerogel for efficient oil-water separation[J]. Surface and Coatings Technology, 2020, 385: 125361.
[67] WANG J T, LIU S Y. Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation[J]. Separation and Purification Technology, 2019, 221: 303-310.

相似文献/References:

[1]李荣光,杜娟,张巍,等.俄罗斯原油在水中的质量分数变化及扩散规律[J].油气储运,2014,33(7):744.[doi:10.6047/j.issn.1000-8241.2014.07.012]
 LI Rongguang,DU Juan,ZHANG Wei,et al.Mass fraction variation and diffusion mechanism of Russian Crude Oil in water[J].Oil & Gas Storage and Transportation,2014,33(11):744.[doi:10.6047/j.issn.1000-8241.2014.07.012]

备注/Memo

收稿日期:2021-06-30;修回日期:2021-08-02;编辑:张腾
基金项目:国家自然科学基金面上项目“表面可控接枝聚合物降凝剂分子的复合PSQ 微球对蜡油体系析蜡特性与流变行为的调控机理研究”,51774311。
作者简介:杨飞,男,1979 年生,教授,博士生导师,2007 年博士毕业于山东大学物理化学专业,现主要从事油气管道输送理论与技术、油气储运胶体与界面化学、储运功能新材料等方向的教学与科研工作。地址:山东省青岛市黄岛区长江西路66 号中国石油大学(华东)储运与建筑工程学院,266580。电话:13864271592。Email:yf9712220@sina.com

更新日期/Last Update: 2021-11-25