[1]刘刚,袁子云,陈雷,等.混合建模方法在油气管网中的应用初探[J].油气储运,2021,40(09):980-990.[doi:10.6047/j.issn.1000-8241.2021.09.003]
 LIU Gang,YUAN Ziyun,CHEN Lei,et al.Preliminary study on application of hybrid modeling method in oil and gas pipeline networks[J].Oil & Gas Storage and Transportation,2021,40(09):980-990.[doi:10.6047/j.issn.1000-8241.2021.09.003]
点击复制

混合建模方法在油气管网中的应用初探

参考文献/References:

[1] 姜昌亮. 石油天然气管网资产完整性管理思考与对策[J]. 油气储运,2021,40(5):481-491.
JIANG C L. Consideration and countermeasures of asset integrity management of oil and gas pipeline networks[J]. Oil & Gas Storage and Transportation,2021,40(5):481-491.
[2] 李柏松,王学力,徐波,孙巍,王新,赵云峰. 国内外油气管道运行管理现状与智能化趋势[J]. 油气储运,2019,38(3):241-250.
LI B S,WANG X L,XU B,SUN W,WANG X,ZHAO Y F. Operation and management status and intelligentization trend of global oil and gas pipelines[J]. Oil & Gas Storage and Transportation,2019,38(3):241-250.
[3] 李峰,王琦,胡健雄,汤奕. 数据与知识联合驱动方法研究进展及其在电力系统中应用展望[J]. 中国电机工程学报,2021,41(13):4377-4390.
LI F,WANG Q,HU J X,TANG Y. Combined data-driven and knowledge-driven methodology research advances and its applied prospect in power systems[J]. Proceedings of the CSEE,2021,41(13):4377-4390.
[4] SHAIR J,XIE X R,WANG L P,LIU W,HE J B,LIU H. Overview of emerging subsynchronous oscillations in practical wind power systems[J]. Renewable and Sustainable Energy Reviews,2019,99:159-168.
[5] 国家发展改革委,国家能源局. 两部门关于印发《中长期油气管网规划》的通知[EB/OL].(2017-05-19)[2021-08-01]. http://www.gov.cn/xinwen/2017-07/12/content_5209925.htm.
National Development and Reform Commission,National Energy Administration. Notice of the two departments on printing and distributing the medium and long term oil and gas pipeline network planning[EB/OL]. (2017-05-19)[2021-08-01]. http://www.gov.cn/xinwen/2017-07/12/12/content_520992 5.htm.
[6] 中华人民共和国工业和信息化部. 工业和信息化部关于印发《促进新一代人工智能产业发展三年行动计划(2018—2020年)》的通知[EB/OL].(2017-12-14)[2021-08-01]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/zh/art/2020/art_de90191568e94fb0b358864d30c67ae9.html.
Ministry of Industry and Information Technology. Notice of the ministry of industry and information technology on printing and distributing the three-year action plan for promoting the development of a new generation of artificial intelligence industry (2018-2020)[EB/OL]. (2017-12-14)[2021-08-01]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/zh/art/2020/art_de90191568e94fb0b358864d30c67ae9.html.
[7] 于涛,李传宪,刘丽君,郭悠悠. 基于大数据挖掘的热油管道闭环安全生产体系[J]. 西安石油大学学报(自然科学版),2021,36(1):85-91.
YU T,LI C X,LIU L J,G Y Y. Closed-loop safety production system of hot oil pipeline based on big data mining[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2021,36(1):85-91.
[8] 冯黎明,伍淑辉,卓勇. 油气管道安全防护智能视频监控系统设计[J]. 石油工业技术监督,2020,36(8):48-51,60.
FENG L M,WU S H,ZHUO Y. Design of intelligent video monitoring system for oil and gas pipeline safety protection[J]. Technology Supervision in Petroleum Industry,2020,36(8):48-51,60.
[9] 税碧垣. 智慧管网的基本概念与总体建设思路[J]. 油气储运,2020,39(12):1321-1330.
SHUI B Y. Basic concepts and general ideas of intelligent pipeline network[J]. Oil & Gas Storage and Transportation,2020,39(12):1321-1330.
[10] CHEN L,YUAN Z Y,XU J X,GAO J Y,ZHANG Y H,LIU G. A novel predictive model of mixed oil length of products pipeline driven by traditional model and data[J]. Journal of Petroleum Science and Engineering,2021,205:108787.
[11] 徐磊,侯磊,李雨,朱振宇,雷婷. 机器学习在油气管道的应用研究进展及展望[J]. 油气储运,2021,40(2):138-145.
XU L,HOU L,LI Y,ZHU Z Y,LEI T. Research progress and prospect of application of machine learning in oil and gas pipeline[J]. Oil & Gas Storage and Transportation,2021,40(2):138-145.
[12] EDGAR T F,PISTIKOPOULOS E N. Smart manufacturing and energy systems[J]. Computers & Chemical Engineering,2017,114:130-144.
[13] 张梦轩,刘洪辰,王敏,蓝兴英,石孝刚,高金森. 化工过程的智能混合建模方法及应用[J]. 化工进展,2021,40(4):1765-1776.
ZHANG M X,LIU H C,WANG M,LAN X Y,SHI X G,GAO J S. Intelligence hybrid modeling method and applications in chemical process[J]. Chemical Industry and Engineering Progress,2021,40(4):1765-1776.
[14] ANIFOWOSE F A,LABADIN J,ABDULRAHEEM A. Hybrid intelligent systems in petroleum reservoir characterization and modeling:the journey so far and the challenges ahead[J]. Journal of Petroleum Exploration and Production Technology,2017,7(1):251-263.
[15] HE L,WEN K,WU C C,GONG J,PING X. Hybrid method based on particle filter and NARX for real-time flow rate estimation in multi-product pipelines[J]. Journal of Process Control,2020,88:19-31.
[16] KIM J,CHAE M,HAN J J,PARK S,LEE Y. The development of leak detection model in subsea gas pipeline using machine learning[J]. Journal of Natural Gas Science and Engineering,2021,94:104134.
[17] STOSCH M V,OLIVEIRA R,PERES J,DE AZEVEDO S F. Hybrid semi-parametric modeling in process systems engineering:past,present and future[J]. Computers & Chemical Engineering,2014,60:86-101.
[18] CAN H J L,HELLINGA C,LUYBEN K C A M,HEIJNEN J J,TE BRAAKE H A B. Strategy for dynamic process modeling based on neural networks in macroscopic balances[J]. AIChE Journal,1996,42(12):3403-3418.
[19] 张磊,贺丁,刘琳琳,都健. 基于模型的化工产品设计方法——综述与展望[J]. 化工进展,2021,40(4):1746-1754.
ZHANG L,HE D,LIU L L,DU J. Model-based chemical product design:review and perspectives[J]. Chemical Industry and Engineering Progress,2021,40(4):1746-1754.
[20] REN J C,LIU D,WAN Y. Modeling and application of Czochralski silicon single crystal growth process using hybrid model of data-driven and mechanism-based methodologies[J]. Journal of Process Control,2021,104:74-85.
[21] ZHU L T,LIU Y X,LUO Z H. An effective three-marker drag model via sub-grid modeling for turbulent fluidization[J]. Chemical Engineering Science,2018,192:759-773.
[22] CLOETE J H,CLOETE S,RADL S,AMINI S. Development and verification of anisotropic solids stress closures for filtered two fluid models[J]. Chemical Engineering Science,2018,192:906-929.
[23] GE W,GUO L,LIU X H,MENG F Y,XU J,HUANG W L,et al. Mesoscience-based virtual process engineering[J]. Computers & Chemical Engineering,2019,126:68-82.
[24] 李晓光. 混合建模方法研究及其在化工过程中的应用[D]. 北京:北京化工大学,2008.
LI X G. Research and application on hybrid modeling approach for chemical processes[D]. Beijing:Beijing University of Chemical Technology,2008.
[25] 朱礼涛,欧阳博,张希宝,罗正鸿. 机器学习在多相反应器中的应用进展[J]. 化工进展,2021,40(4):1699-1714.
ZHU L T,OUYANG B,ZHANG X B,LUO Z H. Progress on application of machine learning to multiphase reactors[J]. Chemical Industry and Engineering Progress,2021,40(4):1699-1714.
[26] ZENDEHBOUDI S,REZAEI N,LOHI A. Applications of hybrid models in chemical,petroleum,and energy systems:a systematic review[J]. Applied Energy,2018,228:2539-2566.
[27] YAO B,CHEN J Q,LI C X,YANG F,SUN G Y,LU Y D. Prediction of wax deposits for crude pipelines using time-dependent data mining[J]. SPE Journal,2021,26(4):1980-2001.
[28] HU X G,ZHANG H G,MA D Z,WANG R. Status detection from spatial-temporal data in pipeline network using data transformation convolutional neural network[J]. Neurocomputing,2019,358:401-413.
[29] BANJARA N K,SASMAL S,VOGGU S. Machine learning supported acoustic emission technique for leakage detection in pipelines[J]. International Journal of Pressure Vessels and Piping,2020,188:104243.
[30] LIN Z,LIU X L,LAO L Y,LIU H X. Prediction of two-phase flow patterns in upward inclined pipes via deep learning[J]. Energy,2020,210:118541.
[31] 王新颖,宋兴帅,杨泰旺. 深度学习神经网络在管道故障诊断中的应用研究[J]. 安全与环境工程,2018,25(1):137-142,148.
WANG X Y,SONG X S,YANG T W. Application of depth learning neural network in pipeline fault diagnosis[J]. Safety and Environmental Engineering,2018,25(1):137-142,148.
[32] SU H,ZIO E,ZHANG J J,YANG Z,LI X Y,ZHANG Z J. A systematic hybrid method for real-time prediction of system conditions in natural gas pipeline networks[J]. Journal of Natural Gas Science and Engineering,2018,57:31-44.
[33] SHAO W M,GE Z Q,SONG Z H. Semisupervised Bayesian Gaussian mixture models for non-Gaussian soft sensor[J]. IEEE Transactions on Cybernetics,2021,51(7):3455-3468.
[34] SHAO W M,SONG Z H,YAO L. Soft sensor development for multimode processes based on semisupervised Gaussian mixture models[J]. IFAC-PapersOnLine,2018,51(18):614-619.
[35] SADEGHIAN A,WU O,HUANG B. Robust probabilistic principal component analysis based process modeling:dealing with simultaneous contamination of both input and output data[J]. Journal of Process Control,2018,67:94-111.
[36] SUN J Y,ZHOU A M,KEATES S,LIAO S B. Simultaneous Bayesian clustering and feature selection through student’s t mixtures model[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(4):1187-1199.
[37] 纪守领,李进锋,杜天宇,李博. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展,2019,56(10):2071-2096.
JI S L,LI J F,DU T Y,LI B. Survey on techniques,applications and security of machine learning interpretability[J]. Journal of Computer Research and Development,2019,56(10):2071-2096.
[38] 孔祥维,唐鑫泽,王子明. 人工智能决策可解释性的研究综述[J]. 系统工程理论与实践,2021,41(2):524-536.
KONG X W,TANG X Z,WANG Z M. A survey of explainable artificial intelligence decision[J]. Systems Engineering—Theory & Practice,2021,41(2):524-536.
[39] VON STOSCH M,OLIVEIRA R,PERES J,DE AZEVEDO S F. A general hybrid semi-parametric process control framework[J]. Journal of Process Control,2012,22(7):1171-1181.
[40] ASGARI S,MIRHOSEININEJAD S,MOAZAMIGOODARZI H,GUPTA R,ZHENG R,PURI I K. A gray-box model for real-time transient temperature predictions in data centers[J]. Applied Thermal Engineering,2021,185:116319.
[41] LI Y,CHATTOPADHYAY P,XIONG S H,RAY A,RAHN C D. Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge[J]. Applied Energy,2016,184:266-275.
[42] JIANG Y D,KOLEHMAINEN J,GU Y L,KEVREKIDIS Y G,OZEL A,SUNDARESAN S. Neural-network-based filtered drag model for gas-particle flows[J]. Powder Technology,2019,346:403-413.
[43] STOSCH M V,OLIVEIRA R,PERES J,DE AZEVEDO S F. A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses[J]. Expert Systems with Applications,2011,38(9):10862-10874.
[44] 邵玉倩,宗原,刘以安,刘登峰. 基于机理模型和模糊加权最小二乘支持向量机(LSSVM)算法的农杆菌发酵过程混合建模与优化[J]. 食品与发酵工业,2019,45(7):65-73.
SHAO Y Q,ZONG Y,LIU Y A,LIU D F. Hybrid modeling and optimization of agrobacterium fermentation process based on a mechanism model and fuzzy weighted LSSVM algorithm[J]. Food and Fermentation Industries,2019,45(7):65-73.
[45] 乔景慧,柴天佑. 数据与模型驱动的水泥生料分解率软测量模型[J]. 自动化学报,2019,45(8):1564-1578.
QIAO J H,CHAI T Y. Data and model-based soft measurement model of cement raw meal decomposition ratio[J]. Acta Automatica Sinica,2019,45(8):1564-1578.
[46] LING J L,KURZAWSKI A. Data-driven adaptive physics modeling for turbulence simulations[C]. Denver:23rd AIAA Computational Fluid Dynamics Conference,2017:1-13.
[47] 尚宇炜,马钊,彭晨阳,武海涛. 内嵌专业知识和经验的机器学习方法探索(一):引导学习的提出与理论基础[J]. 中国电机工程学报,2017,37(19):5560-5571.
SHANG Y W,MA Z,PENG C Y,WU H T. Study of a novel machine learning method embedding expertise part I:proposals and fundamentals of guiding learning[J]. Proceedings of the CSEE,2017,37(19):5560-5571.
[48] 张亦知,程诚,范钇彤,李高华,李伟鹏. 基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证[J]. 航空学报,2020,41(3):114-123.
ZHANG Y Z,CHENG C,FAN Y T,LI G H,LI W P. Datadriven correction of turbulence model with physics knowledge constrains in channel flow[J]. Acta Aeronautica et Astronautica Sinica,2020,41(3):114-123.
[49] CALLE-ETXABE K L D,RUIZ-CÁRCEL C,STARR A,FERREIRO S,ARNAIZ A,GÓMEZ-OMELLA M,et al. Hybrid modelling for linear actuator diagnosis in absence of faulty data records[J]. Computers in Industry,2020,123:103339.
[50] NAGRATH D,MESSAC A,BEQUETTE B W,CRAMER S M. A hybrid model framework for the optimization of preparative chromatographic processes[J]. Biotechnology Progress,2004,20(1):162-178.
[51] YANG S,NAVARATHNA P,GHOSH S,BEQUETTE B W. Hybrid modeling in the era of smart manufacturing[J]. Computers & Chemical Engineering,2020,140:106874.
[52] GRAY F M,SCHMIDT M. A hybrid approach to thermal building modelling using a combination of Gaussian processes and grey-box models[J]. Energy and Buildings,2018,165:56-63.
[53] DAI J Y,CHEN N,YUAN X F,GUI W H,LUO L H. Temperature prediction for roller kiln based on hybrid firstprinciple model and data-driven MW-DLWKPCR model[J].
ISA Transactions,2020,98:403-417.
[54] 陈鸿伟,麻哲瑞,吕春旺,刘玉强,张巍,王睿坤. 基于混合建模的蒸汽管道参数计算[J]. 中国电力,2020,53(9):195-201.
CHEN H W,MA Z R,LYU C W,LIU Y Q,ZHANG W,WANG R K. Parameter calculation of steam pipeline based on hybrid modeling[J]. Electric Power,2020,53(9):195-201.
[55] WANG J X,ZHONG H W,LAI X W,XIA Q,WANG Y,KANG C Q. Exploring key weather factors from analytical modeling toward improved solar power forecasting[J]. IEEE Transactions on Smart Grid,2019,10(2):1417-1427.
[56] BHUTANI N,RANGAIAH G P,RAY A K. First-principles,data-based,and hybrid modeling and optimization of an industrial hydrocracking unit[J]. Industrial & Engineering Chemistry Research,2006,45(23):7807-7816.
[57] TEIXEIRA A,CUNHA A E,CLEMENTE J J,MOREIRA J L,CRUZ H J,ALVES P M,et al. Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems[J]. Journal of Biotechnology,2005,118(3):290-303.
[58] 谢鹏,刘昊,龚雨晗,倪芃芃,合曼阿澧. 基于深度学习的海底管道外腐蚀剩余强度评估[J]. 油气储运,2021,40(6):651-657.
XIE P,LIU H,GONG Y H,NI P P,HEMAN A L. Evaluation of residual strength of externally-corroded submarine pipelines based on deep learning[J]. Oil & Gas Storage and Transportation,2021,40(6):651-657.
[59] 王洪超,李强,罗毅,王文,王立坤,张弢甲. 基于相似度的管道泄漏负压波定位算法[J]. 油气储运,2021,40(6):679-684.
WANG H C,LI Q,LUO Y,WANG W,WANG L K,ZHANG T J. A similarity based locating method of negative pressure wave caused by pipeline leakage[J]. Oil & Gas Storage and Transportation,2021,40(6):679-684.
[60] SU L,ZHAO J,WANG W. Hybrid physical and data driven transient modeling for natural gas networks[J/OL]. Journal of Natural Gas Science and Engineering,2021:104146 (2021-07-12)[2021-08-01]. https://www.sciencedirect.com/science/article/abs/pii/S1875510021003474. DOI:10.1016/j.jngse.2021.104146.

相似文献/References:

[1]税碧垣 张栋 李莉 薛鲁宁 陈国群.智慧管网主要特征与建设构想[J].油气储运,2019,38(12):1.
 SHUI Biyuan,ZHANG Dong,LI Li,et al.Main characteristics and construction conception of intelligent pipeline network[J].Oil & Gas Storage and Transportation,2019,38(09):1.
[2]李锴,李江,顾清林,等.西气东输智慧管网建设实践[J].油气储运,2021,40(03):241.[doi:10.6047/j.issn.1000-8241.2021.03.001]
 LI Kai,LI Jiang,GU Qinglin,et al.Practice of intelligent pipeline network development in West-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2021,40(09):241.[doi:10.6047/j.issn.1000-8241.2021.03.001]
[3]董绍华,张轶男,左丽丽.中外智慧管网发展现状与对策方案[J].油气储运,2021,40(03):249.[doi:10.6047/j.issn.1000-8241.2021.03.002]
 DONG Shaohua,ZHANG Yinan,ZUO Lili.Intelligent pipeline network at home and abroad: recent development, existing problems and solutions[J].Oil & Gas Storage and Transportation,2021,40(09):249.[doi:10.6047/j.issn.1000-8241.2021.03.002]
[4]陈斯迅,李在蓉,王禹钦,等.管道数字孪生体模型的构建及应用[J].油气储运,2021,40(06):643.[doi:10.6047/j.issn.1000-8241.2021.06.006]
 CHEN Sixun,LI Zairong,WANG Yuqin,et al.Construction and application of Digital Twin model of pipeline[J].Oil & Gas Storage and Transportation,2021,40(09):643.[doi:10.6047/j.issn.1000-8241.2021.06.006]

备注/Memo

收稿日期:2021-07-01;修回日期:2021-08-12;编辑:李在蓉
基金项目:国家自然科学基金面上项目“轻组分在原油非稳态压力流中的作用机理研究”, 51774315;中央高校基本科研业务费专项“输油管道内部流动安全量化评价研究”,20CX02403A;广东省重点领域研发计划项目“油气储运重大基础设施灾害防御关键技术及装备研发与示范”,2019B111102001。
作者简介:刘刚,男,1975 年生,教授,博士生导师,2004 年博士毕业于中国石油大学(华东)油气储运工程专业,现主要从事油气管道系统数据挖掘与智能决策的应用研究工作。地址:山东省青岛市黄岛区长江西路66 号中国石油大学(华东),266580。电话:0532-86981819。Email:liugang@upc.edu.cn

更新日期/Last Update: 2021-09-25