[1]周煊勇,刘半藤,徐菲,等.基于AIC-RBF的油气管柱挤压形变估计方法[J].油气储运,2021,40(01):44-50.[doi:10.6047/j.issn.1000-8241.2021.01.008]
 ZHOU Xuanyong,LIU Banteng,XU Fei,et al.Extrusion deformation estimation method of oil and gas string based on AIC-RBF[J].Oil & Gas Storage and Transportation,2021,40(01):44-50.[doi:10.6047/j.issn.1000-8241.2021.01.008]
点击复制

基于AIC-RBF的油气管柱挤压形变估计方法

参考文献/References:

[1] LYU R, ZHAO H, XIN L. Quantitative research on signal of pipeline coating defect detection based on HHT[C]. Changsha: 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2018: 17703659.
[2] TORRES L, VIGNAL G, KOROL K, SUTHERLAND J, TAPPERT S. Detection of crack-related features within dented pipe using electromagnetic acoustic transduction (EMAT) technology[C]. Calgary: 2016 11th International Pipeline Conference, 2016: V001T03A059.
[3] 王婷,杨辉,冯庆善,周利剑,王富祥,项小强. 油气管道环焊缝缺 陷内检测技术现状与展望[J]. 油气储运,2015,34(7):694-698.
WANG T, YANG H, FENG Q S, ZHOU L J, WANG F X, XIANG X Q. Current status and prospect of inline inspection technologies for defects in girth weld of oil and gas pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(7): 694-698.
[4] 李健,陈世利,黄新敬,曾周末,靳世久. 长输油气管道泄漏监 测与准实时检测技术综述[J]. 仪器仪表学报,2016,37(8): 1747-1760.
LI J, CHEN S L, HUANG X J, ZENG Z M, JIN S J. Review of leakage monitoring and quasi real-time detection technologies for long gas & oil pipelines[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1747-1760.
[5] 傅丹蓉,常连庚,邸强华,杨寒,肖春辉. 漏磁检测器用于海底管 道的磁化研究[J]. 油气储运,2015,34(2):204-207.
FU D R, CHANG L G, DI Q H, YANG H, XIAO C H. Magnetization study of MFL detector for submarine pipelines[J]. Oil & Gas Storage and Transportation, 2015, 34(2): 204-207.
[6] 黄松岭,王哲,王珅,赵伟. 管道电磁超声导波技术及其应用研 究进展[J]. 仪器仪表学报,2018,39(3):1-12.
HUANG S L, WANG Z, WANG S, ZHAO W. Review on advances of pipe electromagnetic ultrasonic guided waves technology and its application[J]. Chinese Journal of Scientific Instrument, 2018, 39(3): 1-12.
[7] 李振北,胡铁华,邱长春,刘争,姜海洋. 压电超声管道腐蚀检测 传感器的支撑结构设计[J]. 油气储运,2018,37(9):1077-1080.
LI Z B, HU T H, QIU C C, LIU Z, JIANG H Y. Design of support structure for the piezoelectric ultrasonic sensor of pipeline corrosion detection[J]. Oil & Gas Storage and Transportation, 2018, 37(9): 1077-1080.
[8] 蔡海潮,尚振东,晁红军. 包覆层性能对输气管道纵向模态导波 传播特性的影响[J]. 中国机械工程,2018,29(12):1434-1438.
CAI H C, SHANG Z D, CHAO H J. Influences of coating performance on longitudinal modal propagation characteristics of gas pipelines[J]. China Mechanical Engineering, 2018, 29(12): 1434-1438.
[9] 张鹏,蒲正元. 管道缺陷漏磁和超声波检测数据的对比分析[J]. 中国安全科学学报,2014,24(10):113-119.
ZHANG P, PU Z Y. Comparative analysis of magnetic and ultrasonic method data on defects in pipeline[J]. China Safety Science Journal, 2014, 24(10): 113-119.
[10] 沙胜义,项小强,伍晓勇,王强,冯庆善,赵光志,等. 输油管道 环焊缝超声波内检测信号识别[J]. 油气储运,2018,37(7): 757-761.
SHA S Y, XIANG X Q, WU X Y, WANG Q, FENG Q S, ZHAO G Z, et al. Ultrasonic ILI signal identification technology for girth weld defects of oil pipelines[J]. Oil & Gas Storage and Transportation, 2018, 37(7): 757-761.
[11] 盛恒,曹丙花,张兴英,范孟豹,叶波. 基于涡流C 扫描成像的缺 陷量化检测技术研究[J]. 中国科技论文,2018,13(2):121-125.
SHENG H, CAO B H, ZHANG X Y, FAN M B, YE B. The research about defects quantification based on eddy current C-scan imaging[J]. China Sciencepaper, 2018, 13(2): 121-125.
[12] 陈俊杰. 油气管道漏磁检测缺陷区域的分段识别方法[J]. 中国 测试,2017,43(11):1-7.
CHEN J J. Segmentation identification method for defect area of MFL detection of oil and gas pipelines[J]. China Measurement & Testing Technology, 2017, 43(11): 1-7.
[13] 朱红秀,刘欢,李宏远,黄松岭,苏志毅. 基于优化RBF 神经网络的管道缺陷量化分析方法[J]. 仪表技术与传感器,2016(2): 83-86.
ZHU H X, LIU H, LI H Y, HUANG S L, SU Z Y. Quantitative analysis method for pipeline defects based on optimized RBF neural network[J]. Instrument Technique and Sensor, 2016(2): 83-86.
[14] 周立国,姚安林,付冉,武明明,江文. Vague 集法在油气管道失 效可能性分析中的应用[J]. 中国安全科学学报,2015,25(10): 91-96.
ZHOU L G, YAO A L, FU R, WU M M, JIANG W. Application of vague set method to failure possibility analysis of oil & gas pipeline[J]. China Safety Science Journal, 2015, 25(10): 91-96.
[15] 林蔚,褚胜楠. 多传感器输油管道检测数据融合技术[J]. 黑龙 江大学自然科学学报,2015,32(3):397-403.
LIN W, CHU S N. Data fusion research in multi-sensor pipeline detection[J]. Journal of Natural Science of Heilongjiang University, 2015, 32(3): 397-403.
[16] 龚骏,税爱社,包建明,吕志博. 多工况下基于RBF 神经网络 的管道泄漏检测[J]. 油气储运,2015,34(7):759-763.
GONG J, SHUI A S, BAO J M, LYU Z B. Pipeline leak detection method based on RBF neural network under different working conditions[J]. Oil & Gas Storage and Transportation, 2015, 34(7): 759-763.
[17] 李琴,孙春梅,黄志强,肖祥,汤海平. 兰成渝腐蚀管道失效压 力的GA-BP 神经网络组合预测方法[J]. 中国安全生产科学 技术,2015,11(11):83-89.
LI Q, SUN C M, HUANG Z Q, XIAO X, SHANG H P. Combined forecasting method of GA-BP neural network for failure pressure of Lan-Cheng-Yu corroded pipelines[J]. Journal of Safety Science and Technology, 2015, 11(11): 83-89.
[18] ZHANG H, YU X J. Research on oil and gas pipeline defect recognition based on IPSO for RBF neural network[J]. Sustainable Computing: Informatics and Systems, 2018, 20: 203-209.
[19] 骆正山,袁宏伟. 基于误差补偿的GM-RBF 海底管道腐蚀预 测模型[J]. 中国安全科学学报,2018,28(3):96-101.
LUO Z S, YUAN H W. GM-RBF model based error compensation for prediction of submarine pipeline corrosion[J]. China Safety Science Journal, 2018, 28(3): 96-101.
[20] 骆正山,王浩,毕傲睿. 基于RS-SVM 的城市埋地燃气管道外 腐蚀情况评价[J]. 中国安全科学学报,2017,27(6):109-114.
LUO Z S, WANG H, BI A R. Evaluation of external corrosion of urban buried gas pipeline based on RS-SVM[J]. China Safety Science Journal, 2017, 27(6): 109-114.
[21] WANG H, KONG C, LI D, QIN N, FAN H B, HONG H, et al. Modeling quality changes in brined bream (Megalobrama amblycephala) fillets during storage: comparison of the Arrhenius model, BP, and RBF neural network[J]. Food and Bioprocess Technology, 2015, 8(12): 2429-2443.
[22] 刘伯鸿,连文博,李婉婉. 基于RBF-ARX 模型的高速列车预 测控制器设计[J]. 北京交通大学学报,2019,43(5):73-79.
LIU B H, LIAN W B, LI W W. Design on high-speed train predictive controller based on RBF-ARX model[J]. Journal of Beijing Jiaotong University, 2019, 43(5): 73-79.

备注/Memo

基金项目:国家科技重大专项资助项目“高含硫气藏安全高效开 发技术”,2016ZX05017;浙江省公益计划项目“导电结构体亚表面 缺陷多模复合无损检测与可靠性评估方法研究”,LQ19F010012。
作者简介:周煊勇,男,1995 年生,在读硕士生,2018 年毕业于 浙江树人大学电子信息工程专业,现主要从事无损检测技术、异源 数据融合技术方向的研究。地址:浙江省杭州市拱墅区树人路8 号, 310000。电话:18768416140。Email:623727560@qq.com
通信作者:吕何新,男,1964 年生,教授,1986 年毕业于杭州电子 工业学院计算机软件专业,现主要从事计算机应用、因特网计算、应 用智能方向的研究工作。地址:浙江省杭州市拱墅区树人路8 号, 310000。电话:13905812862。Email:hexin1024@sohu.com

更新日期/Last Update: 2021-01-30