版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-88222991
高压直流接地极对埋地管道的干扰监测及影响规律
Interference monitoring and influence rule of HVDC grounding electrode to buried pipelines
natural gas pipeline
; HVDC transmission engineering; grounding electrode; remote potential monitoring system; stray current为了掌握高压直流输电工程接地极对埋地管道杂散电流干扰的影响规律,在17 个高压直流 输电工程接地极附近的12 条管道上安装了电位远程监测系统,对管道电位进行长时间连续监测。 通过管道电位变化分析接地极的干扰频次和干扰时间,以及管道受干扰程度、影响范围。监测结果 显示:通过对管道电位长时间连续监测能够准确判断出接地极对管道的干扰影响,2017 年17 个接 地极的总干扰频次为201 次,干扰总时长为657.31 h,较2016 年略有下降;监测到1 987 km 管道受 到接地极的干扰,其中华南地区接地极对管道的干扰较华东、华中及西北地区大。干扰电位分布规 律分析结果表明,接地极与管道的垂直距离越短,靠近接地极端杂散电流流入流出的管段越短,其对 远离接地极端的管道的干扰程度越大、干扰范围越广。(图7,表2,参21)
In order to understand the influence rule of the grounding electrode of HVDC transmission engineering on the stray current of buried pipeline, the remote potential monitoring system was equipped for 12 pipelines near the 17 grounding electrodes of HVDC transmission engineering for continuous monitoring of pipeline potential in long time. The interference frequency and time of grounding electrodes, as well as the interference degree and range of pipeline, were analyzed based on the variation of pipeline potential. According to the monitoring results, the interference influence of grounding electrode to pipeline can be judged accurately through the long-time continuous monitoring of pipeline potential. In 2017, the interference frequency of 17 grounding electrodes was 201 times, and the total interference time was 657.31 h, which was slightly shorter than that in 2016. Interference of grounding electrode was monitored on 1 987 km pipelines, and particularly, the interference of grounding electrode to pipeline in South China was greater than that in East China, Central China and Northwest China. By analysis on the distribution rule of interference potential, it is found that the shorter the vertical distance from grounding electrode to pipeline, the shorter the pipeline section with stray current flowing in the end close to the grounding electrode, the greater the interference to the pipeline far away from the grounding electrode, and the larger the interference range is. (7 Figures, 2 Tables, 21 References)
[1] 胡毅. 直流接地极电流对输电线路接地构件的腐蚀影响研究[J]. 中国电力,2000,33(1):59-61.
HU Y. Corrosive effect of DC ground current on grounding electrodes[J]. Electric Power, 2000, 33(1): 59-61.
[2] 商善泽. 直流接地极入地电流对埋地金属管道腐蚀影响的研 究[D]. 北京:华北电力大学,2016:1.
SHANG S Z. Research on the corrosion influence of ground current from DC earth electrode on the buried metal pipeline[D]. Beijing: North China Electric Power University, 2016: 1.
[3] 房媛媛,卢剑. 直流接地极的地电流对埋地金属管道腐蚀影响 分析[J]. 南方电网技术,2013,7(6):71-75.
FANG Y Y, LU J. Analysis on the influence of HVDC grounding electrode’s ground current on the corrosion of buried metal pipelines[J]. Southern Power System Technology, 2013, 7(6): 71-75.
[4] 祁正阳,季莞然,李自力,崔淦. 金属管道高压直流干扰腐蚀的 研究进展[J]. 材料保护,2018,51(6):84-91,99.
QI Z Y, JI W R, LI Z L, CUI G. Research progress of highvoltage direct current interference corrosion in metal pipeline[J]. Materials Protection, 2018, 51(6): 84-91, 99.
[5] 曹国飞,顾清林,姜永涛,李永发,毛建,修林冉,等. 高压直流接 地极对埋地管道的电流干扰及人身安全距离[J]. 天然气工业, 2019,39(3):125-132.
CAO G F, GU Q L, JIANG Y T, LI Y F, MAO J, XIU L R, et al. Current interference of HVDC ground electrode to buried pipelines and its personal safety distance[J]. Natural Gas Industry, 2019, 39(3): 125-132.
[6] 郭庆茹,何悟忠,冷旭耀,宫明. 对管道直流杂散电流干扰腐蚀 的防治方法[J]. 油气储运,2003,22(4):46-48.
GUO Q R, HE W Z, LENG X Y, GONG M. Prevention and control methods for interference corrosion of pipeline DC stray current[J]. Oil & Gas Storage and Transportation, 2003, 22(4): 46-48.
[7] 楚金伟,韦晓星,刘青松. 直流接地极附近引压管绝缘卡套放电 原因分析[J]. 油气田地面工程,2015,34(10):73-74.
CHU J W, WEI X X, LIU Q S. Analysis on the causes of discharge of the insulating jacket of the pressure inducing tube near the DC ground[J]. Oil-Gas Field Surface Engineering, 2015, 34(10): 73-74.
[8] 韩昌柴,曹国飞,覃慧敏,李英义,牛文花,葛彩刚,等. 阀室引压 管放电烧蚀失效分析[J]. 天然气工业,2016,36(10):118-125.
HAN C C, CAO G F, QIN H M, LI Y Y, NIU W H, GE C G, et al. Analysis of failures induced by the discharge ablation of pressure-guiding tubes in valve chambers[J]. Natural Gas Industry, 2016, 36(10): 118-125.
[9] 许明忠,向敏,夏祝福,陈啟斌,蔡更新,葛彩刚. 输气管道气液 联动阀绝缘卡套烧蚀案例研究[J]. 石油化工腐蚀与防护,2018, 35(6):15-20.
XU M Z, XIANG M, XIA Z F, CHEN Q B, CAI G X, GE C G. Case study on the ablation of the insulating ferrule of gasliquid linkage valve in gas transmission pipeline[J]. Corrosion & Protection in Petrochemical Industry, 2018, 35(6): 15-20.
[10] 孙建桄,曹国飞,韩昌柴,李英义,葛彩刚,王磊磊,等. 高压直流输电系统接地极对西气东输管道的影响[J]. 腐蚀与防护, 2017,38(8):631-636.
SUN J G, CAO G F, HAN C C, LI Y Y, GE C G, WANG L L, et al. Influence of HVDC transmission system ground electrode on West-East Gas Pipeline[J]. Corrosion and Protection, 2017, 38(8): 631-636.
[11] 应斌. 高压直流输电系统接地极对长输管道安全运行的影响[J]. 油气田地面工程,2014,33(7):23-24.
YING B. Influence of grounding electrodes of HVDC transmission system on safe operation of long-distance transmission pipelines[J]. Oil-Gas Field Surface Engineering, 2014, 33(7): 23-24.
[12] 江波,常熔,孙其刚. 鱼龙岭接地极对广东管网阴保系统的影 响及对策[J]. 油气田地面工程,2013,32(9):126.
JIANG B, CHANG R, SUN Q G. The influence of Yulongling ground electrode on the cathodic protection system of Guangdong pipe network and its countermeasures[J]. Oil-Gas Field Surface Engineering, 2013, 32(9): 126.
[13] 周军峰,谭海川,张鑫,高荣钊,宋莹莹,葛彩刚. 直流杂散电流 对天然气管道干扰影响案例分析[J]. 腐蚀与防护,2018,39(9): 713-718.
ZHOU J F, TAN H C, ZHANG X, GAO R Z, SONG Y Y, GE C G. Case study on interference effect of DC stray currents on natural gas pipelines[J]. Corrosion and Protection, 2018, 39(9): 713-718.
[14] 刘智勇,王长朋,杜翠薇,李晓刚. 外加电位对X80 管线钢在鹰 潭土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报,2011, 47(11):1434-1439.
LIU Z Y, WANG C P, DU C W, LI X G. Effect of applied potentials on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution[J]. Acta Metallurgica Sinica, 2011, 47(11): 1434-1439.
[15] ZHANG T M, ZHAO W M, GUO W, WANG Y. Hydrogen permeation behavior through HSLA steels and its implications on hydrogen embrittlement susceptibility[J]. Applied Mechanics and Materials, 2013, 302: 310-316.
[16] 秦润之,杜艳霞,姜子涛,路民旭. 高压直流输电系统对埋地金 属管道的干扰研究现状[J]. 腐蚀科学与防护技术,2016,28(3): 263-268.
QIN R Z, DU Y X, JIANG Z T, LU M X. Current status of research on interference of HVDC transmission system to buried metal pipelines[J]. Corrosion Science and Protection Technology, 2016, 28(3): 263-268.
[17] 封辉,池强,吉玲康,李鹤,杨坤. 管线钢氢脆研究现状及进展[J]. 腐蚀科学与防护技术,2017,29(3):318-322.
FENG H, CHI Q, JI L K, LI H, YANG K. Research and development of hydrogen embrittlement of pipeline steel[J]. Corrosion Science and Protection Technology, 2017, 29(3): 318-322.
[18] 原佳强,王莉萍. 不同电化学充氢状态下X70 和X80 管线钢的 断裂特性[J]. 金属热处理,2015,40(12):56-58.
YUAN J Q, WANG L P. Fracture characteristics of X70 and X80 pipeline steels under different electrochemical hydrogen charging state[J]. Heat Treatment of Metals, 2015, 40(12): 56-58.
[19] 杨东平,胥聪敏,罗金恒,王珂,李辉辉. 0.8 设计系数用X80 管 线钢在近中性pH 溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015,43(1):89-95.
YANG D P, XU C M, LUO J H, WANG K, LI H H. Stress corrosion cracking behavior of X80 pipeline steel with design factor of 0.8 in near-neutral pH value solutions[J]. Journal of Materials Engineering, 2015, 43(1): 89-95.
[20] 程明,张平. 鱼龙岭接地极入地电流对西气东输二线埋地钢质 管道的影响分析[J]. 天然气与石油,2010,28(5):22-26.
CHENG M, ZHANG P. Effect of Yulongling grounding current on buried steel pipeline of West-East Gas Pipeline 2[J]. Natural Gas and Oil, 2010, 28(5): 22-26.
[21] 李振军. 高压/特高压直流输电系统对埋地钢质管道干扰的现 场测试与分析[J]. 腐蚀与防护,2017,38(2):142-146,150.
LI Z J. Field test and analysis of interference of high or ultra high voltage direct current transmission system to underground steel pipeline[J]. Corrosion and Protection, 2017, 38(2): 142- 146, 150.
[1]刘四运,贾伯早.基于双Duffing振子的天然气管道泄漏检测系统[J].油气储运,2015,34(7):784.[doi:10.6047/j.issn.1000-8241.2015.07.022]
LIU Siyun,JIA Bozao.Dual-Duffing-oscillator-based leakage detection system for natural gas pipeline[J].Oil & Gas Storage and Transportation,2015,34(01):784.[doi:10.6047/j.issn.1000-8241.2015.07.022]
[2]杨金生,赵宣,贾世民.天然气管道轮式超声波壁厚测量系统的研制[J].油气储运,2015,34(8):859.[doi:10.6047/j.issn.1000-8241.2015.08.012]
YANG Jinsheng,ZHAO Xuan,JIA Shimin.Wheeled ultrasonic wall thickness measurement system develop for natural gas pipeline[J].Oil & Gas Storage and Transportation,2015,34(01):859.[doi:10.6047/j.issn.1000-8241.2015.08.012]
[3]李志学,魏莎莎.基于复合作业量的天然气管输定价模型试验研究——以西气东输二线为例[J].油气储运,2015,34(9):955.[doi:10.6047/j.issn.1000-8241.2015.09.008]
LI Zhixue,WEI Shasha.Experiment of pricing model for pipeline transmission of natural gas based on composite throughput-A case study on the 2nd West-to-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2015,34(01):955.[doi:10.6047/j.issn.1000-8241.2015.09.008]
[4]程宜强 李强林 蔡海生 徐志斌 范文斌.济淄天然气管道清管收球速度的控制[J].油气储运,2014,33(1):108.[doi:10.6047/j.issn.1000-8241.2014.01.023]
CHENG Yiqiang,LI Qianglin,CAI Haisheng,et al.Control of receiving velocity during pigging for Ji-Zi Natural Gas Pipeline[J].Oil & Gas Storage and Transportation,2014,33(01):108.[doi:10.6047/j.issn.1000-8241.2014.01.023]
[5]宋静,马晓强,郭东升.天然气管道爆裂事故原因及防范措施[J].油气储运,2014,33(4):385.[doi:10.6047/j.issn.1000-8241.2014.04.009]
SONG Jing,MA Xiaoqiang,GUO Dongsheng.Causes and preventive measures against explosion accident of gas pipeline[J].Oil & Gas Storage and Transportation,2014,33(01):385.[doi:10.6047/j.issn.1000-8241.2014.04.009]
[6]杨小龙.天然气长输管道并行跨接方案比选[J].油气储运,2016,35(预出版):1.
YANG Xiaolong.Comparison of the crossover schemes for the parallel long-distance natural gas pipeline[J].Oil & Gas Storage and Transportation,2016,35(01):1.
[7]陈亮 彭忍社 刘英杰 李瑜.气液执行机构电子爆管保护的原理及应用[J].油气储运,2016,35(预出版):1.
CHEN Liang,PENG Renshe,LIU Yingjie,et al.Principle and application of electronic line burst protection of pneumatic-hydraulic actuator[J].Oil & Gas Storage and Transportation,2016,35(01):1.
[8]刘震,姬忠礼,吴小林,等.输气管道内颗粒物检测及分离器性能评价[J].油气储运,2016,35(1):47.[doi:10.6047/j.issn.1000-8241.2016.01.009]
LIU Zhen,JI Zhongli,WU Xiaolin,et al.Detection on particulate matters in gas pipeline and assessment on separator performance[J].Oil & Gas Storage and Transportation,2016,35(01):47.[doi:10.6047/j.issn.1000-8241.2016.01.009]
[9]梁现华.天然气长输管道SCADA 系统建设与改进[J].油气储运,2014,33(10):1113.[doi:10.6047/j.issn.1000-8241.2014.10.019]
LIANG Xianhua.Construction and improvement of SCADA system in long-distance gas pipeline[J].Oil & Gas Storage and Transportation,2014,33(01):1113.[doi:10.6047/j.issn.1000-8241.2014.10.019]
[10]刘英男,张鑫,单鲁维.基于特征线法的天然气管道放空时间的计算[J].油气储运,2014,33(12):1338.[doi:10.6047/j.issn.1000-8241.2014.12.017]
LIU Yingnan,ZHANG Xin,SHAN Luwei.Characteristic method based calculation of venting time for natural gas pipeline[J].Oil & Gas Storage and Transportation,2014,33(01):1338.[doi:10.6047/j.issn.1000-8241.2014.12.017]
[11]顾清林 姜永涛 曹国飞 葛彩刚 丁疆强 高荣钊 修林冉 宋莹莹.高压直流接地极对埋地管道的干扰监测及影响规律[J].油气储运,2021,40(01):1.
GU Qinglin,JIANG Yongtao,CAO Guofei,et al.Interference monitoring and influence rule of HVDC groundingelectrode to buried pipelines[J].Oil & Gas Storage and Transportation,2021,40(01):1.
基金项目:中国石油天然气股份有限公司科学研究与技术开发 项目“安全环保关键技术研究与推广——高压直流电区域管道风险 防控技术研究与应用”,2016D.4602。
作者简介:顾清林,男,1965 年生,高级工程师,1989 年毕业于佳 木斯工学院焊接工艺与设备专业,现主要从事管道完整性管理工作。 地址:上海市浦东新区世纪大道1200 号中国石油上海大厦34 楼, 200122。电话:021-50958766。Email:gql6512@163.com