版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
基于风洞平台实验的内浮顶罐油气泄漏扩散数值模拟
Numerical simulation of oil vapor leakage and diffusion from inner floating roof tank based on wind tunnel platform experiment
inner floating roof tank
; oil vapor leakage; wind tunnel; mass concentration of oil vapor ; numerical simulation研究内浮顶罐油气泄漏扩散规律,对于加强环境污染控制、保障罐区安全具有重要意义。建立风洞实验平台,测试小型内浮顶罐风速及浮盘位置对蒸发损耗速率的影响,并考察了风场、浓度场分布规律。基于CFD 数值模拟,使用UDF 导入环境风,建立了内浮顶罐油气泄漏扩散的数值模型,并通过风洞实验数据验证其模拟的可行性。重点讨论了内浮顶罐外风场及风压分布规律、风速对内浮顶罐油气流场分布及油气扩散浓度的影响。结果表明:浮盘位置越低、风速越大,蒸发速率越快;罐壁的静压力分布规律为迎风侧最大、背风侧居中、罐两侧最小;不同风速下,罐内油气分布整体呈现对称状态;风速越小,油气质量浓度越高,浮盘缝隙处的油气质量浓度最高,并存在安全和环境污染隐患。研究成果对于内浮顶罐设计及运行维护、环保安全管理具有参考价值。(图13,参27)
Study on the law of oil vapor leakage and diffusion in inner floating roof tanks is of great significance for strengthening environmental pollution control and ensuring tank farm safety. The wind tunnel test platform was established to test the effects of wind speed and floating plate position on evaporation loss rate of small inner floating roof tank, and the distribution laws of wind field and concentration field were investigated. Based on CFD numerical simulation, the UDF was used to introduce environmental wind, the numerical model of oil vapor leakage and diffusion from inner floating roof tank was established, and the feasibility of the simulation was verified by wind tunnel experimental data. The distribution law of wind field and wind pressure outside the inner floating roof tank, as well as the influence of wind speed on the flow field distribution and the diffusion concentration of oil vapor in the inner floating roof tank, was emphatically discussed. The results show that the lower the floating plate position and the higher the wind speed, the faster the evaporation rate will be. The static pressure distributed on the tank wall is as follows: highest on windward wall, medium on leeward wall and lowest on the two side walls. Under different wind speeds, the distribution of oil vapor on the tank is symmetrical. The lower the wind speed, the higher the oil vapor mass concentration will be. The oil vapor concentration at the gap between floating plates is the highest, leaving hidden dangers of safety and environmental pollution. The research results are of reference value for the design, operation and maintenance of the inner floating roof tank and environmental protection and safety management. (13 Figures, 27 References)
[1] 黄维秋. 油气回收基础理论及其应用[M]. 北京:中国石化出版 社,2011:82-83. HUANG W Q. Fundamental theory of oil vapor recovery and its application[M]. Beijing:China Petrochemical Press,2011: 82-83.
[2] ZHANG L,MA H,SHEN Z,WANG L Q,LIU R,PAN J. Influence of pressure and temperature on explosion characteristics of n-hexane/air mixtures[J]. Experimental Thermal and Fluid Science,2019,102:52-60.
[3] NECCI A,ARGENTI F,LANDUCCI G,COZZANI V. Accident scenarios triggered by lightning strike on atmospheric storage tanks[J]. Reliability Engineering & System Safety,2014, 127:30-46.
[4] LIU Y,FU Z,JIANG A,LIU Q Z,LIU B. FDTD analysis of the effects of indirect lightning on large floating roof oil tanks[J]. Electric Power Systems Research,2016,139:81-86.
[5] WU D,CHEN Z. Quantitative risk assessment of fire accidents of large-scale oil tanks triggered by lightning[J]. Engineering Failure Analysis,2016,63:172-181.
[6] TAUSEEF S M,ABBASI T,POMPAPATHI V,ABBASI S A. Case studies of 28 major accidents of fires/explosions in storage tank farms in the backdrop of available codes/standards/models for safely configuring such tank farms[J]. Process Safety and Environmental Protection,2018,120:331-338.
[7] AFSHAR-MOHAJER N,FOX M A,KOEHLER K.The human health risk estimation of inhaled oil spill emissions with and without adding dispersant[J]. Science of The Total Environment,2019,654:924-932.
[8] 司海涛. 大型浮顶罐主要安全事故类型及原因[J]. 油气储运, 2013,32(9):1029-1033. SI H T. Accident’s type and cause of large-scale floating roof tank[J]. Oil & Gas Storage and Transportation,2013,32(9): 1029-1033.
[9] 陈颖,李丽娜,杨常青,郝郑平,孙汉坤,李瑶. 我国VOC 类有 毒空气污染物优先控制对策探讨[J]. 环境科学,2011,32(12): 3469-3475. CHEN Y,LI L N,YANG C Q,HAO Z P,SUN H K,LI Y. Countermeasures for priority control of toxic VOC pollution[J]. Environmental Science,2011,32(12):3469-3475.
[10] 刘君,黄维秋,彭群. 加油站油气扩散与回收效果的数值分 析[J]. 环境工程学报,2009,3(5):864-868. LIU J,HUANG W Q,PENG Q. Numerical analysis of gasoline vapor diffusion and recovery results in gasoline station[J]. Chinese Journal of Environmental Engineering,2009,3(5): 864-868.
[11] KIM E,PARK J,CHO J H,MOON I. Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea[J]. International Journal of Hydrogen Energy, 2013,38(3):1737-1743.
[12] KOUNTOURIOTIS A,ALEIFERIS P G,CHARALAMBIDES A G. Numerical investigation of VOC levels in the area of petrol stations[J]. Science of the Total Environment,2014,470/471: 1205-1224.
[13] 郝庆芳,黄维秋,景海波,李飞,方洁,纪虹,等. 外浮顶罐不 同孔隙油气泄漏扩散数值模拟[J]. 化工进展,2019,38(3): 1226-1235. HAO Q F,HUANG W Q,JING H B,LI F,FANG J,JI H, et al. Numerical simulation of oil vapor leakage and diffusion from different pore of external floating-roof tank[J]. Chemical Indsustry and Engineering Progress,2019,38(3):1226-1235.
[14] PORTELA G,GODOY L A. Wind pressures and buckling of cylindrical steel tanks with a dome roof[J]. Journal of Constructional Steel Research,2005,61(6):808-824.
[15] 刘国梁,宣捷,杜可,赵汝敖. 重烟羽扩散的风洞模拟实验研 究[J]. 安全与环境学报,2004(3):27-32. LIU G L,XUAN J,DU K,ZHAO R A. Wind tunnel experiments on dense gas plume dispersion[J]. Journal of safety and Environment,2004(3):27-32.
[16] SABRANSKY I J,MELBOURNE W H. Design pressure distribution on circular silos with conical roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics,1987,26(1): 65-84.
[17] MACDONALD P A,KWOK K C S,HOLMES J D. Wind loads on circular storage bins,silos and tanks:I. Point pressure measurements on isolated structures[J]. Journal of Wind Engineering and Industrial Aerodynamics,1988,31(2):165-187.
[18] HUANG W,HUANG F,FANG J,FU L P. A calculation method for the numerical simulation of oil products evaporation and vapor diffusion in an internal floating-roof tank under the unsteady operating state[J]. Journal of Petroleum Science and Engineering,2020,188:106867.
[19] LATEB M,MASSON C,STATHOPOULOS T,BEDARD C. Comparison of various types of k -ε models for pollutant emissions around a two-building configuration[J]. Journal of Wind Engineering and Industrial Aerodynamics,2013,115:9-21.
[20] 王福君. 计算流体动力学分析:CFD 软件原理与应用[M]. 北 京:清华大学出版社,2004:7-12,113-126. WANG F J. Computational fluid dynamics analysis:principles and application of CFD software[M]. Beijing:Tsingmua University Press,2004:7-12,113-126.
[21] 方平治,顾明,谈建国,栾桂汉. 阻塞率对表面风压系数影响的 数值模拟[J]. 建筑科学与工程学报,2013,30(3):101-106. FANG P Z,GU M,TAN J G,LUAN G H. Numerical simulation of effect of blockage ratio on façade pressure coefficient[J]. Journal of Architecture and Civil Engineering, 2013,30(3):101-106.
[22] BAETKE F,WERNER H. Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,35:129-147.
[23] BEKELE S A,HANGAN H. A comparative investigation of the TTU pressure envelope - Numerical versus laboratory and full scale results[J]. Wind and Structures,2002,5(2/3/4):337-346.
[24] USA Environmental Protection Agency(EPA). Emission factor documentation for AP-42 section 7.1:Organic liquid storage tanks:final report[R]. Washington D C:USA EPA, 2006:38-116.
[25] 赵晨露,黄维秋,石莉,吴宏章,王英霞,杨光,等. 内浮顶罐中 油气扩散运移的数值模拟[J]. 安全与环境学报,2015,15(3): 72-77. ZHAO C L,HUANG W Q,SHI L,WU H Z,WANG Y X, YANG G,et al. Numerical simulation model of the oil-vapor diffusion and its migration from the internal floating-roof tank[J]. Journal of Safety and Environment,2015,15(3): 72-77.
[26] 陈亚楠,赵东风,韩丰磊,卢磊,欧阳振宇. 浮顶罐挥发性有 机物排放量计算及控制措施[J]. 油气储运,2018,37(5): 551-555. CHEN Y N,ZHAO D F,HAN F L,LU L,OUYANG Z Y. Emission calculation and control measures of the volatile organic compounds in floating roof tanks[J]. Oil & Gas Storage and Transportation,2018,37(5):551-555.
[27] 谢飞,罗炎平,张玉龙. 大型浮顶罐密封圈油气泄漏扩散分析[J]. 消防科学与技术,2017,36(10):1458-1460. XIE F,LUO Y P,ZHANG Y L. Analysis on the diffusion of oil gas leakage with large floating roof tank seal ring[J]. Fire Science and Technology,2017,36(10):1458-1460.
[1]赵汉青.我国油气管道的事故成因及环境预防措施[J].油气储运,2015,34(4):368.[doi:10.6047/j.issn.1000-8241.2015.04.005]
ZHAO Hanqing.Causes of oil and gas pipeline incidents in China and environmental precautions[J].Oil & Gas Storage and Transportation,2015,34(04):368.[doi:10.6047/j.issn.1000-8241.2015.04.005]
[2]黄维秋 陈风 吕成 张高 黄风雨.基于风洞平台实验的内浮顶罐油气泄漏扩散数值模拟[J].油气储运,2020,39(01):1.
HUANG Weiqiu,CHEN Feng,LYU Cheng,et al.Numerical simulation of oil vapor leakage and diffusion from inner floating roof tank based on wind tunnel platform test[J].Oil & Gas Storage and Transportation,2020,39(04):1.
(收稿日期:2019-07-03;修回日期:2020-02-18;编辑:杜娟) 基金项目:国家自然科学基金资助项目“储油罐石油蒸发及油气排放扩散的数值模拟及风洞实验研究”,51574044;江苏省重点研发计划项目“产业前瞻与共性关键技术”,BE2018065;江苏省研究生科研与实践创新计划项目“浮顶罐内油品蒸发损耗的数值模拟及风洞实验”,KYCX18_2634。作者简介:黄维秋,男,1965 年生,教授,博士生导师,2004 年博士毕业于南京理工大学应用化学专业,现主要从事油气回收基础理论及其应用等方面的科研与教学工作。地址:江苏省常州市武进区滆湖中路21 号常州大学石油工程学院,213164。电话:0519-85280250。Email:hwq213@cczu.edu.cn