版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
中俄东线岛状多年冻土现状及退化原因
The status and degradation causes of patchy permafrost along China- Russia Eastern Gas Pipeline
多年冻土产生的冻胀和融沉可能导致管道变形破坏,探明中俄东线天然气管道岛状多年冻土 的现状和退化原因非常必要。采用工程地质钻探、地温测试及高密度电法的综合勘察方法,对管道 沿线16 处疑似岛状多年冻土区进行勘察验证;通过搜集管道沿线气候和森林覆盖率等资料,分析 近年来研究区域内各要素变化趋势,推测其对冻土环境的影响。研究表明:由于全球气候转暖及人 为活动频繁等诸多因素,导致东北地区气温升高、森林覆盖率减少、湿地消失,冻土环境失去了原有 的热平衡,造成管道沿线岛状多年冻土区显著退化;与此同时,20 世纪70 年代划定的东北地区多年 冻土南界呈现明显北移的趋势。(图5,表1,参24)
Frozen swelling and thaw settlement caused by years of permafrost may lead to pipeline deformation and failure. In order to study the status and degradation causes of the patchy permafrost along China-Russia Eastern Gas Pipeline, 16 suspected patchy permafrost regions were investigated and verified by means of the comprehensive investigation method which combines engineering geological drilling, ground temperature test and high-density electrical method. And besides, the data along the pipeline (e.g. climate and forest coverage ratio) were collected to analyze the change trend of each element in the study area in recent years and predict their influences on the permafrost environment. It is indicated that due to the alteration of global climate and many other factors (e.g. the frequent activities of the human), temperature in the Northeast China rises, forest coverage ratio reduces and wetlands disappears, so the original heat balance of the permafrost environment is deteriorated. As a result, patchy permafrost regions along the pipeline are significantly degraded. And correspondingly, the southern boundary of the permafrost in the Northeast China which was delineated in the 1970s moves to the north obviously. (5 Figures, 1 Table, 24 References)
[1] 郭东信,王绍令,鲁国威,等. 东北大小兴安岭多年冻土分区[J冰川冻土,1981,3(3):1-9.
GUO D X,WANG S L,LU G W,et al. Division of permafrost regions in Daxiao Hinggan Ling Northeast China[J]. Journal of Glaciology and Geocryology,1981,3(3):1-9.
[2] 王澄海,靳双龙,施红霞. 未来50a 中国地区冻土面积分布变化[J冰川冻土,2014,36(1):1-8.
WANG C H,JIN S L,SHI H X. Area change of the frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology,2014,36(1):1-8.
[3] WOO M K,LEWKOWICZ A G,ROUSE W R. Response of the Canadian permafrost environment to climatic change[J]. Physical Geography,1992,13(4):287-317.
[4] BUTEAU S,FORTIER R,DELISLE G,et al. Numerical simulation of the impacts of climate warming on a permafrost mound[J]. Permafrost and Periglacial Processes,2004,15:41-57.
[5] 金会军,于少鹏,吕兰芝,等. 大小兴安岭多年冻土退化及其趋 势初步评估[J]. 冰川冻土,2006,28(4):467-476.JIN H J,YU S P,LYU L Z,et al. Degradation of permafrost in the Da and Xiao Hinggan Mountains,Northeast China,and preliminary assessment of its trend[J]. Journal of Glaciology and Geocryology,2006,28(4):467-476.
[6] 吉延峻,王国尚,金会军,等. 东北地区未来50~100a 冻土退化 预测及评价[C]. 兰州:2009 年甘肃省电机工程学会学术年会, 2009:457-464.
JI Y J,WANG G S,JIN H J,et al. Prediction and evaluation of permafrost degradation in 50-100 years in Northeast China[C]. Lanzhou:Gansu Society for Electrical Engineering Annual Conference in 2009,2009:457-464.
[7] 曾旭婧,邢艳秋,单炜,等. 基于Mann-Kendall 法的北黑高速沿 线岛状冻土区植被退化分析[J]. 西北林学院学报,2017,32(2): 22-29.
ZENG X J,XING Y Q,SHAN W,et al. Vegetation degradation analysis in the island-shaped permafrost areas along Bei'an- Heihe expressway based on the Mann-Kendall test[J]. Journal of Northwest Forestry University,2017,32(2):22-29.
[8] 罗倩,刘晓暄,苏伟. 基于Mann-Kendall 的北方农牧交错带植被 时空变化分析[J]. 湖北农业科学,2015,54(23):5892-5895.
LUO Q,LIU X X,SU W. Vegetation spatial and temporal variation analysis based on the Mann-Kendall patterns in the agricultural-pastoral areas[J]. Hubei Agricultural Sciences,2015, 54(23):5892-5895.
[9] 周幼吾,郭东信,邱国庆,等. 中国冻土[M]. 北京:科学出版社, 2000:171-197.
ZHOU Y W,GUO D X,QIU G Q,et al. Geocryology in China[M]. Beijing:Science Press,2000:171-197.
[10] 张艳,吴青柏,刘建平. 小兴安岭地区黑河-北安段多年冻土分 布特征[J]. 冰川冻土,2001,23(3):312-317.
ZHANG Y,WU Q B,LIU J P. Distribution characteristics of the permafrost in the section from Heihe to Bei'an in the Xiao Hinggan Mountains[J]. Journal of Glaciology and Geocryology,2001,23(3):312-317.
[11] 张泽,马巍,张中琼. 工程地质学中冻土研究的系统与方法[J地球科学,2016,41(2):352-359.
ZHANG Z,MA W,ZHANG Z Q. System and method of geocryology in engineering geology[J]. Earth Science,2016, 41(2):352-359.
[12] 高晓飞,孙宏全,詹胜文,等. 冻土地区勘察在管道设计工作中 的重要性[J]. 油气储运,2005,24(12):70-72.
GAO X F,SUN H Q,ZHAN S W,et al. The importance of frozen soil district survey in pipeline design[J]. Oil & Gas Storage and Transportation,2005,24(12):70-72.
[13] 王庆峰,张廷军,吴吉春,等. 祁连山区黑河上游多年冻土分布 考察[J]. 冰川冻土,2013,35(1):19-29.
WANG Q F,ZHANG T J,WU J C,et al. Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology,2013,35(1):19-29.
[14] 谢胜波,屈建军. 青藏铁路工程防沙产生的积沙对下伏冻土的 热影响及机理[J]. 铁道学报,2013,35(12):77-82.
XIE S B,QU J J. Effect of sand sediments accumulated in sandcontrol projects on the thermal regime of underlying permafrost and its mechanism[J]. Journal of the China Railway Society, 2013,35(12):77-82.
[15] 李丽英,张立新,赵少杰. 冻土介电常数的实验研究[J]. 北京师 范大学学报(自然科学版),2007,43(3):241-244.
LI L Y,ZHANG L X,ZHAO S J. Laboratory measurement of the dielectric constant of frozen soil[J]. Journal of Beijing Normal University(Natural Science),2007,43(3):241-244.
[16] 柳瑶,胡照广,姜华,等. 应用高密度电阻率法探查高纬度冻土 区地基下岛状冻土分布[J]. 森林工程,2014,30(6):161-165.
LIU Y,HU Z G,JIANG H,et al. Application of high-density resistance to detect island permafrost distribution under the foundation in high-latitude frozen regions[J]. Forest Engineering,2014,30(6):161-165.
[17] 朱兆荣,杨永鹏,韩龙武. 高密度电法在 G214 公路工程地质勘 察中的应用[J]. 黑龙江大学工程学报,2014,5(3):174-179.
ZHU Z R,YANG Y P,HAN L W. Application of high density resistivity method in the engineering geological investigation of G214 highway[J]. Journal of Engineering of Heilongjiang University,2014,5(3):174-179.
[18] IPCC. Climate change 2013:The physical science basis[MCambridge:Cambridge University Press,2014:TS5-TS7.
[19] 王光宇. 中俄原油管线大兴安岭多年冻土地温分布的特征研 究[D]. 哈尔滨:黑龙江大学,2015:11-12.
WANG G Y. Temperature distribution characteristics of the permafrost in Da Hinggan Mountains along China-Russia Crude Oil Pipeline[D]. Harbin:Heilongjiang University,2015:11-12.
[20] 中国气象局气象数据中心. 中国地面国际交换站气候资料年值数据集[R/OL]. (2010-07-25)[2017-06-07]. http://data.cma.
cn/site/index.html.
China Meteorological Data Service Center. Climate annual dataset of China Ground International Exchange Station[R/ OL].(2010-07-25)[2017-06-07]. http://data.cma.cn/site/ index.html.
[21] 赵博宇. 黑龙江多年冻土变化趋势以及与气温的相关关系研 究[J]. 哈尔滨师范大学自然科学学报,2016,32(5):77-80.
ZHAO B Y. Research on change trend of frozen soil and correlation with temperature in Heilongjiang province over the years[J]. Natural Science Journal of Harbin Normal University,2016,32(5):77-80.
[22] 杨扬,刘海苹,王志刚,等. 大兴安岭地区多年冻土活动层变化 规律研究[J]. 黑龙江工程学院学报,2017,31(1):15-18.
YANG Y,LIU H P,WANG Z G,et al. On change laws of permafrost active layer in Daxing'anling Region[J]. Journal of Heilongjiang Institute of Technology,2017,31(1):15-18.
[23] 于成山,尹春晶. 对黑河市人口、资源、环境现状分析与未来发 展的建议[J]. 黑河学刊,2007(6):135-136.
YU C S,YIN C J. Analysis and suggestion on the population, resources and environment in Heihe region[J]. Heihe Journal, 2007(6):135-136.
[24] 任宪平. 孙吴县土地利用变化与生态环境分析[J]. 水土保持应 用技术,2008(4):46-47.
REN X P. Land use changes and eco-environment analysis of Sunwu county[J]. Technology of Soil and Water Conservation, 2008(4):46-47.
[1]王婷 刘阳 王巨洪 刘建平 陈健 王新 荆宏远.中俄东线管道地质灾害监测技术应用与建议[J].油气储运,2020,39(01):1.
WANG Ting,LIU Yang,WANG Juhong,et al.Application and suggestions of geological hazard monitoring technology for China–Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2020,39(12):1.
[2]赵新伟 池强 张伟卫 杨峰平 许春江.管径1 422 mm 的X80 焊管断裂韧性指标[J].油气储运,2016,35(预出版):1.
ZHAO Xinwei,CHI Qiang,ZHANG Weiwei,et al.Fracture toughness indicators of OD1 422 mm X80 welded steel pipe[J].Oil & Gas Storage and Transportation,2016,35(12):1.
[3]周亚薇 张振永.中俄东线天然气管道环焊缝断裂韧性设计[J].油气储运,2018,37(预出版):1.
ZHOU Yawei,ZHANG Zhenyong.The design for the fracture toughness of girth weld in Russia-China Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2018,37(12):1.
[4]欧新伟 陈朋超 任恺 李一博.中俄东线数字化移交及与完整性管理系统的对接[J].油气储运,2020,39(01):1.
OU Xinwei,CHEN Pengchao,REN Kai,et al.Digital handover of China–Russia Eastern Gas Pipeline and docking with integrity management system[J].Oil & Gas Storage and Transportation,2020,39(12):1.
[5]赵国辉 王岳 杨全博.中俄东线天然气管道贸易交接点仿真软件研发[J].油气储运,2020,39(01):1.
ZHAO Guohui,WANG Yue,YANG Quanbo.Development of simulation software for custody transfer points of China–Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2020,39(12):1.
[6]赵新伟,池强,张伟卫,等.管径 1422 mm 的 X80 焊管断裂韧性指标[J].油气储运,2017,36(1):37.[doi:10.6047/j.issn.1000-8241.2017.01.005]
ZHAO Xinwei,CHI Qiang,ZHANG Weiwei,et al.Fracture toughness indicators of OD 1 422 mm X80 welded steel pipe[J].Oil & Gas Storage and Transportation,2017,36(12):37.[doi:10.6047/j.issn.1000-8241.2017.01.005]
[7]张振永 张文伟 周亚薇 薄国公.中俄东线OD 1 422 mm 埋地管道的断裂控制设计[J].油气储运,2017,36(预出版):1.
ZHANG Zhenyong,ZHANG Wenwei,ZHOU Yawei,et al.The fracture control design of the OD 1 422 mm buried pipeline in China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2017,36(12):1.
[8]赵园园 陈光联 宫爽.中俄东线地质灾害的特征及危险性[J].油气储运,2017,36(预出版):1.
ZHAO Yuanyuan,CHEN Guanglian,GONG Shuang.Characteristics and risk of geological disaster along China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2017,36(12):1.
[9]张振永 孟献强 孙学军 周亚薇 张金源.中俄东线站场工艺管道用高钢级低温钢管韧性指标[J].油气储运,2018,37(预出版):1.
ZHANG Zhenyong,MENG Xianqiang,SUN Xuejun,et al.Toughness index of low-temperature pipe of high steel grade used for the process pipelines at the station of China-Russia eastern natural gas pipeline[J].Oil & Gas Storage and Transportation,2018,37(12):1.
[10]宫爽 陈光联 赵园园.中俄东线黑龙江穿越地质条件分析及方案选择[J].油气储运,2018,37(预出版):1.
GONG Shuang,CHEN Guanglian,ZHAO Yuanyuan.Geological conditions analysis and schemes selection on Heilongjiang River crossing project of China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2018,37(12):1.
[11]任海宾 陈光联 黄文杰 吕宝辉.中俄东线岛状多年冻土现状及退化原因[J].油气储运,2017,36(预出版):1.
REN Haibin,CHEN Guanglian,HUANG Wenjie,et al.The status and degradation causes of patchy permafrost along China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2017,36(12):1.
基金项目:中国石油管道局工程有限公司科研课题“中俄原油管 道二线多年冻土区管道设计应用技术研究”,GK14-13-A。 作者简介:任海宾,男,1985 年生,工程师,2011 年硕士毕业于 北京科技大学岩土工程专业,现主要从事油气储运岩土工程勘察 工作。地址:河北省廊坊市广阳区和平路146 号,065000。电话: 18531611860,Email:renhaibin@cnpc.com.cn