版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
考虑三维地形及障碍的煤层气田集输系统布局优化
Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles
coalbed methane
; gathering systems; three dimensional terrains; obstacles; dendritic; radial随着煤层气田的滚动开发,集输管网复杂程度急剧增长,管网设计过程中需要考虑环境因素及可靠性,地形起伏和障碍等的存在会影响整个管网系统的管道走向、站位选择。结合"多点接入、柔性集输"和"枝上枝"集输工艺特点,研究煤层气集输管网系统在三维地形且存在障碍情况下的优化并计算优化管网的可靠度。利用3次B样条曲线插值和障碍函数叠加的方法对地形仿真,以管网系统的经济性为目标函数,以相关集输条件为约束,讨论枝状和放射状两种管网连接方式,对连接方式交叉后的4种管网布局模式的经济性进行对比,并将管网可靠性分析转化为树型网络可靠度问题进行求解。结果表明:三维地形下的绕障路径优化既可以减少距离,又可以降低路径的起伏程度,与二维平面上的绕障路径只会使距离增加有本质区别;枝状管网经济性好,放射状管网可靠度高,以总花费与可靠度比值为评价指标,"放射状+枝状"集输管网布局最优;与原模式相比,优化后的"枝状+枝状"与"放射状+枝状"集输管网布局建设投资费用均可减少约30%,且前者管网总长度比后者短约29%,验证了模型的合理性和先进性。
With the progressive development of CBM fields, the complexity of pipeline networks is increasing dramatically. The design of pipeline network should take environmental factors and reliability into account, since pipeline direction and site selection may be influenced by the terrain reflief and obstacles. In this paper, the optimization of CBM pipeline network was discussed under the conditions of three dimensional terrain with obstacles, depending on the features of "multipoint connection, flexible gathering" and "multiple branches" technologies, and the reliablity of the optimized pipeline network was calculated. Terrains were simulated by means of cubic B spline curve interpolation and obstacle function superposition. The dendritic and radial network connection modes were discussed with the economy of pipeline networks as the objective function and the related gathering conditions as the constraints. Then, four pipeline network layout modes which were established by crossing the two connection modes were compared for their economic feasibility. The reliability of pipeline network was solved after being converted into the reliability of tree network. It is shown that the optimized obstacleavoiding path in three dimensional terrain can shorten the distance, and also reduce the relief of the path, which is essentially different from the obstacle-avoiding path in two dimensional plane that could only increase the distance. The dendritic connection mode is the best in economic feasibility, the radial connection mode is the best in reliablity, and the "radial+dendritic" mode is the best when the ratio of total cost to reliability is taken as an evaluation indicator. Compared with the original modes, the optimized "dendritic+dendritic" mode and "radial+dendritic" mode both are 30% less in construction cost and "dendritic+dendritic" mode is about 29% longer than "radial+dendritic" mode in total pipeline length, verifying the rationality and advantage of the model.
[1] 陈仕林,齐建波,周军,等. 煤层气田地面集输技术进展[J].油气储运,2015,34(12):1276-1279. CHEN S L, QI J B, ZHOU J, et al. Progresses in surface gathering techniques in coal-bed methane (CBM) fields[J].Oil & Gas Storage and Transportation,2015,34(12):1276-1279.
[2] 王益山,王合林,刘大伟,等. 中国煤层气钻井技术现状及发展趋势[J].天然气工业,2014,34(8):87-91. WANG Y S, WANG H L, LIU D W, et al. State-of-the-art and developing trend of CBM drilling technologies in China[J].Natural Gas Industry,2014,34(8):87-91.
[3] 陈洪明,梅永贵,薛占新,等. 沁水盆地郑村区块煤层气集输系统的优化调整[J].天然气工业,2014,34(8):108-112. CHEN H M, MEI Y G, XUE Z X, et al. Optimization and adjustment of the CBM gas gathering and transportation system in the Zhengcun Block, Qinshui Basin[J].Natural Gas Industry, 2014,34(8):108-112.
[4] 许茜,李娜,海显莲. 煤层气田地面集输标准化设计[J].天然气工业,2014,34(8):113-117. XU Q, LI N, HAI X L. A standardized design of a ground surface CBM gas gathering and transportation project:A case of the Zhengcun Block in the Qinshui Basin[J].Natural Gas Industry, 2014,34(8):113-117.
[5] 冉明鑫. 煤层气田集输系统的优化研究[D].北京:中国石油大学(北京),2013:21-43. RAN M X. The study for optimization of CBM gas field gathering and transportation system[D].Beijing:China University of Petroleum (Beijing),2013:21-43.
[6] 葛翠翠. 天然气集输管网优化[D].大庆:大庆石油学院,2007:20-39. GE C C. Optimization of gas gathering pipe network[D].Daqing:Daqing Petroleum Institute,2007:20-39.
[7] 张思琦. 煤层气地面系统最优规划研究[D].北京:中国石油大学(北京),2014:34-42. ZHANG S Q. The optimal research of CBM surface gathering and transportation system[D].Beijing:China University of Petroleum (Beijing),2014:34-42.
[8] 李晓平,史学海,宫敬,等. 地形对煤层气集输管线水力计算的影响[J].油气田地面工程,2012,31(12):24-26. LI X P, SHI X H, GONG J, et al. The influence of terrain on CBM gathering pipeline hydraulic calculation[J].Oil-Gas Field Surface Engineering,2012,31(12):24-26.
[9] 甄宝军. 考虑凸形障碍物的天然气集输管网系统规划研究[D].成都:西南石油学院,2005:37-46. ZHEN B J. The study of gas gathering pipe network system considering the convex obstacles[D].Chengdu:Southwest Petroleum Institute,2005:37-46.
[10] 雷杨. 基于凸形障碍物的注水管网优化研究[D].青岛:中国石油大学(华东),2011:29-41. LEI Y. Study on optimization for oilfield water-injection pipe network under complicated terrain[D].Qingdao:China University of Petroleum (Huadong),2011:29-41.
[11] 孙海. 西峰油田地面集输规划方案优化研究[D].青岛:中国石油大学(华东),2007:88-108. SUN H. The optimization research of Xifeng Oilfield's surface gathering system scheme[D].Qingdao:China University of Petroleum (Huadong),2007:88-108.
[12] 周军,李晓平,温凯,等. 地形起伏条件下的枝状管网布局优化[J].油气田地面工程,2013,32(11):3-4. ZHOU J, LI X P, WEN K, et al. The layout optimization of dendritic pipeline network under the condition of terrain ups and downs[J].Oil-Gas field Surface Engineering,2013,32(11):3-4.
[13] 裴红,刘文伟."枝上枝"集输工艺在大型低渗、低产天然气田及煤层气田建设中的应用[J].石油规划设计,2010,21(2):12-15. PEI H, LIU W W." Multi-branch" gathering and transferring process used in the construction of the large low permeability, low productivity natural gas and CBM field[J].Planning and Design of Oil,2010,21(2):12-15.
[14] 史学海. 煤层气地面集输管网系统的优化研究[D].北京:中国石油大学(北京),2012:22-38. SHI X H. The study for optimization of CBM surface gathering and transportation pipeline network system[D].Beijing:China University of Petroleum (Beijing),2012:22-38.
[15] 王洪元,卜莹,潘操. 基于遗传蚁群算法的气田集输管网优化方法[J].计算机与应用化学,2012,12(6):1495-1498. WANG H Y, BU Y, PAN C. An optimization method based on GA-ACA for gas gathering pipeline network in a gas field[J].Computer and Applied Chemistry,2012,12(6):1495-1498.
[16] 蒋洪,张黎,任广欣,等. 煤层气地面集输管网优化[J].天然气与石油,2013,31(1):8-12. JIANG H, ZHANG L, REN G X, et al. Optimization of coalbed methane (CBM)surface gathering and transportation pipeline network[J].Natural Gas and Oil,2013,31(1):8-12.
[17] 刘伟. 韩城煤层气地面集输工艺技术[J].中国煤层气,2013, 10(1):35-37. LIU W. Technology on CMB surface gathering and transportation process in Hancheng Block[J].China Coalbed Methane,2013,10(1):35-37.
[18] 陈仕林,李建春. 沁南潘河煤层气田"分片集输一级增压"集输技术[J].天然气工业,2011,31(5):35-38. CHEN S L, LI J C. A case history of the Panhe CBM Gas Field of the southern Qinshui Basin:Per-well gas gathered by each individual fractional valve set to one centralized boosting station[J].Natural Gas Industry,2011,31(5):35-38.
[19] EI-MAHDY O F M, AHMED M E H, METWALLI S. Computer aided optimization of natural gas pipe networks using genetic algorithm[J].Applied Soft Computing, 2010, 10(4):1141-1150.
[20] 魏立新,刘扬. 油气集输系统障碍拓扑布局优化设计方法[J].石油学报,2006,27(6):120-124. WEI L X, LIU Y. Obstacle topological layout optimization design of oil gas gathering and transferring system[J].Acta Petrolei Sinica,2006,27(6):120-124.
[21] ZHOU J, GONG J, LI X, et al. Optimization of coalbed methane gathering system in China[J].Advances in Mechanical Engineering,2014,9(6):147-381.
[22] 柳洁,孙洁,邓志安. 几种集输管网井组划分方法的比较[J].石油工业技术监督,2011,6(1):1-3. LIU J, SUN J, DENG Z A. Comparison of several gathering pipe network well group division method[J].Technology Supervision in Petroleum Industry,2011,6(1):1-3.
[23] 黄维和. 大型天然气管网系统可靠性[J].石油学报, 2013, 34(2):401-404. HUANG W H. Reliability of large-scale natural gas pipeline network[J].Acta Petrolei Sinica,2013,34(2):401-404.
[24] 范慕炜,宫敬,伍阳,等. 天然气管网可靠性评价方法研究现状[J].油气储运,2015,34(4):343-348. FAN M W,GONG J,WU Y,et al. Research status of reliability evaluation of gas pipeline network[J].Oil & Gas Storage and Transportation,2015,34(4):343-348.
[25] 关中原,高辉,贾秋菊. 油气管道安全管理及相关技术现状[J].油气储运,2015,34(5):457-463. GUAN Z Y, GAO H, JIA Q J. Oil/gas pipeline safety management and its technology status[J].Oil & Gas Storage and Transportation,2015,34(5):457-463.
[26] 李明菲,周利剑,郑洪龙,等. 我国天然气管网系统可靠性评价技术现状[J].油气储运,2015,34(5):464-468. LI M F, ZHOU L J, ZHENG H L, et al. Current reliability assessment techniques for natural gas pipeline networks in China[J].Oil & Gas Storage and Transportation,2015,34(5):464-468.
[27] 陈思锭,李重剑,陈黎鹏. 树枝状输气管网可靠性评估[J].油气储运,2012,31(5):335-339. CHEN S D, LI Z J, CHEN L P. Reliability evaluation of dendritic gas pipeline network[J].Oil & Gas Storage and Transportation,2012,31(5):335-339.
[28] 许茜,薛岗,王红霞,等. 沁水盆地煤层气田樊庄区块采气管网的优化[J].天然气工业,2010,30(6):91-93. XU Q, XUE G, WANG H X, et al. Optimization of flow line network:Case history of the Fanzhuang Block in the coalbed methane gas fields, Qinshui Basin[J].Natural Gas Industry, 2010,30(6):91-93.
[29] 梅永贵,郭简,王景悦,等. 沁水煤层气集输管网三维地理信息系统的设计[J].油气储运,2015,34(12):1328-1332. MEI Y G, GUO J, WANG J Y, et al. Design of 3D GIS for coal-bed methane (CBM)gathering pipeline network in the Qinshui Basin[J].Oil & Gas Storage and Transportation, 2015,34(12):1328-1332.
[1]周鹏,袁宗明,谢英,等.塔河油田集输系统污水腐蚀因素分析[J].油气储运,2008,27(5):45.[doi:DOI:10.6047/j.issn.1000-8241.2008.05.013]
ZHOU Peng,YUAN Zongming.Study on Corrosion Factors of the Produced Water from Gathering System in Tahe Oilfield[J].Oil & Gas Storage and Transportation,2008,27(6):45.[doi:DOI:10.6047/j.issn.1000-8241.2008.05.013]
[2]邓燕,邢宇,姜霞.超导炉在油田集输系统中的应用[J].油气储运,2004,23(11):48.[doi:10.6047/j.issn.1000-8241.2004.11.015]
DENG Yan,XING Yu.The Application of Super-Conducting Furnace in oil Gathering-line System of Oilfield[J].Oil & Gas Storage and Transportation,2004,23(6):48.[doi:10.6047/j.issn.1000-8241.2004.11.015]
[3]田栓魁,韩专,霍彦莉.储罐自动清砂新技术[J].油气储运,2000,19(06):40.[doi:10.6047/j.issn.1000-8241.2000.06.013]
Tian Shuankui,Han Zhuan.The New Technology of Tank Non-entrance Automatic Desanding[J].Oil & Gas Storage and Transportation,2000,19(6):40.[doi:10.6047/j.issn.1000-8241.2000.06.013]
[4]刘扬,刘晓燕,魏立新,等.原油集输系统转油站效率及能耗测算[J].油气储运,2006,25(11):50.[doi:10.6047/j.issn.1000-8241.2006.11.014]
LIU Yang,LIU Xiaoyan.The Efficiency Computing and Energy Dissipation Analysis of Oil Transferring Station in Niuxintuo Oilfield[J].Oil & Gas Storage and Transportation,2006,25(6):50.[doi:10.6047/j.issn.1000-8241.2006.11.014]
[5]梅永贵 郭简 王景悦 薛占新 王仙之 杜晓冬 赵磊 屈丽彬.沁水煤层气集输管网三维地理信息系统的设计[J].油气储运,2016,35(预出版):1.
MEI Yonggui,GUO Jian,WNG Jingyue,et al.Design of 3D GIS for coal-bed methane (CBM) gathering pipeline network in the Qinshui Basin[J].Oil & Gas Storage and Transportation,2016,35(6):1.
[6]冷冬梅. 大庆外围油田电热管单管通球工艺现场试验[J].油气储运,2013,32(10):1080.[doi:10.6047/j.issn.1000-8241.2013.10.010]
Leng Dongmei. Field test of single-pipe pigging in electric heating pipe inDaqing Peripheral Oilfields[J].Oil & Gas Storage and Transportation,2013,32(6):1080.[doi:10.6047/j.issn.1000-8241.2013.10.010]
[7]梅永贵,郭简,王景悦,等.沁水煤层气集输管网三维地理信息系统的设计[J].油气储运,2015,34(12):1328.[doi:10.6047/j.issn.1000-8241.2015.12.016]
MEI Yonggui,GUO Jian,WANG Jingyue,et al.Design of 3D GIS for coal-bed methane (CBM) gathering pipeline network in the Qinshui Basin[J].Oil & Gas Storage and Transportation,2015,34(6):1328.[doi:10.6047/j.issn.1000-8241.2015.12.016]
[8]刘牧.鄂东气田保德区块产能建设工程线路勘察[J].油气储运,2015,34(12):1355.[doi:10.6047/j.issn.1000-8241.2015.12.021]
LIU Mu.Pipeline route survey for productivity building projects in Block Baode, Eastern Ordos Gasfield[J].Oil & Gas Storage and Transportation,2015,34(6):1355.[doi:10.6047/j.issn.1000-8241.2015.12.021]
[9]周军,李晓平,林金贤,等.基于含煤粉的煤层气管道管流数值模拟与分析[J].油气储运,2014,33(4):395.[doi:10.6047/j.issn.1000-8241.2014.04.011]
ZHOU Jun,LI Xiaoping,LIN Jinxian,et al.Numerical simulation and analysis of pipe flow based on CBM pipelinew ith pulverized coal[J].Oil & Gas Storage and Transportation,2014,33(6):395.[doi:10.6047/j.issn.1000-8241.2014.04.011]
[10]何国玺 梁永图 方利民 任玉鸿 肖俏.考虑三维地形及障碍的煤层气田集输系统布局优化[J].油气储运,2016,35(预出版):1.
HE Guoxi,LIANG Yongtu,FANG Limin,et al.Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles[J].Oil & Gas Storage and Transportation,2016,35(6):1.
收稿日期:2015-07-19;改回日期:2016-03-03。
基金项目:国家自然科学基金资助项目"成品油管道批次输送过程中的复杂传热传质机理研究",51474228;山西省基础研究计划——煤层气联合研究基金资助项目"煤层气地面集输系统优化设计与运行控制",2014012012。
作者简介:何国玺,男,在读博士生,1989年生,2015年硕士毕业于中国石油大学(北京)油气储运工程专业,现主要从事长输油气管道与油气田集输相关技术研究。地址:北京市昌平区府学路18号,102249。电话:15101186627,Email:heguoxicup@163.com