版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
煤层气小型撬装液化装置的优化
Optimization of small-scale skid-mounted liquefaction device for coalbed methane
CBM
; skid-mounted liquefaction device; liquefaction cycle; refrigerant; deep separation; cold box; heat exchanger煤层气田具有多井、低压、低产等特点,小规模先导试验井组和偏远气井单独建设管道输送系统经济性较差,导致产出气不能通过集输管道进行有效外输。提出了适合煤层气撬装液化装置的新型混合工质制冷剂液化流程:对原料气进行预冷,利用低温将原料气中杂质析出,然后吸附进入第一显热换热器/第二显热换热器中,并进行脱除;利用原燃料气进行复温吹洗,脱除的杂质随燃料气进入发电机燃烧,第一显热换热器与第二显热换热器交替运行,使其前处理流程更加简单。针对煤层气撬装液化装置使用油润滑螺杆压缩机驱动的方式,提出了混合工质制冷剂节流制冷机结构,实现润滑油与制冷剂的深度分离。对于冷箱结构,采用板翅式换热器与微细管结构绕管式换热器相结合的优化方式。研制了煤层气撬装液化试验样机,试验运行测试结果表明:该装置最小比功耗为0.612(kW·h)/m3,其液化性能指标与日处理量10×104 m3 的集中式液化装置的性能相当。
Coalbed methane (CBM) fields are characterized by multiple wells, low pressure and low production. It is not economical to build an independent pipeline system for small pilot wells or remote wells, so the produced gas can not be transported efficiently via gas pipelines. In this paper, a new type of mixed refrigerant liquefaction process suitable for CBM skid-mounted liquefaction device was put forward. First, the feed gas is pre-cooled so that the impurities in the feed gas can be precipitated under the effect of low temperature. Second, the impurities are adsorbed into the first/second sensible heat exchanger for removal. And third, the original fuel gas is used for polythermal flush and the removed impurities flow into electric generators together with the fuel gas for combustion. The first and the second sensible heat exchangers run alternatively. Therefore, this pretreatment process becomes simpler. For CBM skid-mounted liquefaction devices which are driven by oil lubricated screw compressors, a J-T refrigerator structure with mixed refrigerant was proposed to separate lubricant from refrigerant deeply. The cold box structure was optimized by combining a plate-fin heat exchanger with a spiral tube heat exchanger with micro tube structure. Finally, a CBM skid-mounted liquefaction prototype was developed and then trial run tests were carried out. It is shown that its minimum unit power consumption is 0.612 (kW·h)/m3 and its liquefaction performance index is equivalent to that of centralized device with treatment rate of 10×104 m3.
[1] 徐文渊. 小型液化天然气生产装置[J]. 石油与天然气化工, 2005,34(3):161-164. XU W Y. Small scale liquefied natural gas production plant[J]. Chemical Engineering of Oil & Gas, 2005,34(3):161-164.
[2] 曹文胜,鲁雪生,林文胜,等. 小型LNG 装置的模块化撬装工艺 技术[J]. 化工学报,2009,60(12):100-105. CAO W S,LU X S,LIN W S,et al. Natural gas purification and liquefaction process of small-scale LNG project in skid-mounted package[J]. Journal of Chemical Industry and Engineering,2009, 60(12):100-105.
[3] PRICE B C. Small-scale LNG facility development[J]. Hydropower Proceeding,2003,82(2):37-39.
[4] 张维江,石玉美,汪荣顺. 几种国外新型的小型天然气液化流程 分析[J]. 低温与超导,2008,36(5):60-63. ZHANG W J,SHI Y M,WANG R S. Flows analysis on several kinds of foreign new small-scale natural gas liquefaction[J]. Cryogenics and Superconductivity,2008,36(5):60-63.
[5] NEKSA P. Small scale natural gas liquefaction plants[C]. Beijing:22nd International Congress of Refrigeration: Refrigeration Creates the Future,2007:2-8.
[6] 黄志光,汪荣顺,石玉美,等. 小型天然气液化装置的研制现状 与前景[J]. 低温工程,2002(6):59-62. HUANG Z G,WANG R S,SHI Y M,et al. Review of mininatural gas liquefier[J]. Cryogenics,2002(6):59-62.
[7] 牛刚,王经,黄玉华. 2×104 m3/d 天然气液化装置的设计及分 析[J]. 天然气工业,2002,22 (3):92-95. NIU G,WANG J,HUANG Y H. Design and analysis of natural gas liquefying device with a deliverability of twenty thousand cubic meters per day[J]. Natural Gas Industry,2002,22(3): 92-95.
[8] 顾安忠,石玉美,汪荣顺,等. 天然气液化流程及装置[J]. 深冷技 术,2003(1):1-6. GU A Z,SHI Y M,WANG R S,et al. Natural gas liquefaction processes and systems[J]. Cryogenic Technology,2003(1):1-6.
[9] 祝铁军,张华,巨永林. 小型撬装式BOG 再液化装置的研发及 性能测试[J]. 低温与超导,2015,43(2):24-28. ZHU T J,ZHANG H,JU Y L. Development and performance tests of a small scale BOG re-liquefaction system in skid-mounted package[J]. Cryogenics and Superconductivity,2015,43(2): 24-28.
[10] 王赟,贺三,战永辉,等. 移动式小型BOG 增压再液化装置功 耗的模拟计算[J]. 油气储运,2015,34(6):662-666. WANG Y,HE S,ZHAN Y H,et al. Simulated calculation of power consumption of the mobile small-scale BOG compression and reliquefaction plant[J]. Oil & Gas Storage and Transportation,2015,34(6):662-666.
[11] NEKSA P,BRENDENG E,DRESCHER M,et al. Development and analysis of a natural gas reliquefaction plant for small gas carriers[J]. Journal of Natural Gas Science and Engineering, 2010(2):143-149.
[12] BEGAZO C,CARVALHO E C. Small-scale LNG plant technologies[J]. Hydrocarbon World,2007(1):28-33.
[1]刘牧.鄂东气田保德区块产能建设工程线路勘察[J].油气储运,2015,34(12):1355.[doi:10.6047/j.issn.1000-8241.2015.12.021]
LIU Mu.Pipeline route survey for productivity building projects in Block Baode, Eastern Ordos Gasfield[J].Oil & Gas Storage and Transportation,2015,34(5):1355.[doi:10.6047/j.issn.1000-8241.2015.12.021]
[2]周军,李晓平,林金贤,等.基于含煤粉的煤层气管道管流数值模拟与分析[J].油气储运,2014,33(4):395.[doi:10.6047/j.issn.1000-8241.2014.04.011]
ZHOU Jun,LI Xiaoping,LIN Jinxian,et al.Numerical simulation and analysis of pipe flow based on CBM pipelinew ith pulverized coal[J].Oil & Gas Storage and Transportation,2014,33(5):395.[doi:10.6047/j.issn.1000-8241.2014.04.011]
[3]何国玺 梁永图 方利民 任玉鸿 肖俏.考虑三维地形及障碍的煤层气田集输系统布局优化[J].油气储运,2016,35(预出版):1.
HE Guoxi,LIANG Yongtu,FANG Limin,et al.Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles[J].Oil & Gas Storage and Transportation,2016,35(5):1.
[4]陈仕林 齐建波 周军 宫敬.煤层气田地面集输技术进展[J].油气储运,2016,35(预出版):1.
CHEN Shilin,QI Jianbo,ZHOU Jun,et al.Progresses in surface gathering techniques in coal-bed methane (CBM) fields[J].Oil & Gas Storage and Transportation,2016,35(5):1.
[5]陈仕林,齐建波,周军,等.煤层气田地面集输技术进展[J].油气储运,2015,34(12):1276.[doi:10.6047/j.issn.1000-8241.2015.12.005]
CHEN Shilin,QI Jianbo,ZHOU Jun,et al.Progresses in surface gathering techniques in coal-bed methane (CBM) fields[J].Oil & Gas Storage and Transportation,2015,34(5):1276.[doi:10.6047/j.issn.1000-8241.2015.12.005]
[6]何国玺,梁永图,方利民,等.考虑三维地形及障碍的煤层气田集输系统布局优化[J].油气储运,2016,35(6):638.[doi:10.6047/j.issn.1000-8241.2016.06.014]
HE Guoxi,LIANG Yongtu,FANG Limin,et al.Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles[J].Oil & Gas Storage and Transportation,2016,35(5):638.[doi:10.6047/j.issn.1000-8241.2016.06.014]
[7]陈仕林 孙兆虎 宫敬.煤层气小型撬装液化装置工艺流程的优化[J].油气储运,2016,35(预出版):1.
CHEN Shilin,SUN Zhaohu,GONG Jing.Optimization of small-scale skid-mounted liquefaction process for coalbed methane[J].Oil & Gas Storage and Transportation,2016,35(5):1.
收稿日期:2015-12-24;改回日期:2016-3-4。
基金项目:国家科技重大专项课题“煤层气田低压集输工艺技术及关键设备研究”,2011ZX05039-001。
作者简介:陈仕林,男,工程师,在读博士生,1983年生,2007年硕士毕业于中国石油大学(华东)油气储运工程专业,现主要从事煤层气田地面集输相关技术的研究工作。地址:北京市东城区安外大街甲88号1001室,100011。电话:010-64299994,Email:chenshilin0720@163.com