网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
:LNG 接收站防波堤、海堤的堤顶需通行车辆,因此LNG 卸料管道穿越防波堤、海堤是其设计的难点,同时LNG 的低温特性使其不能采用顶管、埋地敷设等常规管道的穿越方案。借鉴美国、日本采用海底和地下涵洞连接码头和储罐工程的实践经验,提出LNG 卸料管道“堤顶箱涵”过堤方案:通过在堤顶道路设置钢筋混凝土箱涵,使LNG 卸料管道在同一标高内平顺通过海堤,箱涵两侧设置4%坡道,满足平交道路车辆通行要求。实例应用结果表明:该方案既不影响堤顶道路通行和堤身稳定,又能保证LNG 接收站工艺管道的正常运行及检修。同时,通过核算海堤的防潮设计水位,“堤顶箱涵”不影响海堤的防潮功能,可为面临同类问题的LNG 接收站管道穿堤设计提供参考。
It is a technical challenge how the LNG unloading pipelines crosses breakwaters or seawalls while vehicle traffic requirements are satisfied. Moreover, the conventional pipeline crossing program (e.g. pipe jacking and underground laying) is not applicable to the LNG pipelines due to their low-temperature characteristics. In this paper, a seawall crossing program of “box culvert on crown” was proposed for LNG unloading pipelines in reference to the engineering practices of connecting docks and tanks through undersea and underground culverts in the US and Japan. Under this program, a reinforced concrete box culvert is set up on either side of the seawall so as to guarantee the LNG unloading pipelines to run through the seawall smoothly at the same elevation, and 4% ramps are prepared on both sides of the box culvert so as to meet the requirements of level crossing traffic. Field application shows that this program ensures the normal operation and maintenance of process pipelines in LNG receiving terminals, with no effect on the traffic conditions at the crown and the stability of the levee. The designed damp-proof water level of the seawalls was recalculated. Furthermore, the damp-proof capacity of the seawall is not affected. This program of “box culvert on crown” provides a reference for LNG receiving terminals with similar problems in the seawall crossing design of pipelines.
[1] 陈位洪,赵世海,赖德贤,等. 某引水工程穿越北江大堤管道工 程方案设计[J]. 建筑结构,2009,39(增刊2):64-67. CHEN W H,ZHAO S H,LAI D X,et al. Schematic design of Guangzhou Xijiang River diversion works crossing through Beijiang Dike[J]. Building Structure,2009,39(S2):64-67.
[2] 陈相宇,谢壮,曾学艺,等. 粉细砂地层大直径盾构下穿大堤风 险控制研究[J]. 地下空间与工程学报,2015,11(4):1033-1038. CHEN X Y,XIE Z,ZENG X Y,et al. Risk analysis and control for large-diameter slurry shield passing under embankment in fine silty sand ground[J]. Chinese Journal of Underground Space and Engineering,2015,11(4):1033-1038.
[3] 胡登辉,耿云鹏. 盾构机以D 模式推进工艺穿越安庆长江大 堤[J]. 石油工程建设,2010,36(1):25-28. HU D H, GENG Y P. D mode propulsion process with tunnel boring machine used for Changjiang River Levee Crossing in Anqing[J]. Petroleum Engineering Construction, 2010,36(1): 25-28.
[4] 李骁晔,王璐,周家俊. 川气东送管道安庆长江隧道穿越的施工 监测[J]. 油气储运,2009,28(11):30-34. LI X Y,WANG L,ZHOU J J. Engineering monitoring for Yangtze River tunnel crossing project of Anqing Gas Transmission Pipeline[J]. Oil & Gas Storage and Transportation, 2009,28(11):30-34.
[5] 安晓科,寇宝庆,宋洋,等. 盾构穿越大堤防渗墙技术与研究[J]. 石油天然气学报, 2013,35(5):288-291. AN X K,KOU B Q,SONG Y,et al. The technology and study of seep handling and shield driving crosses the big dike[J]. Journal of Oil and Gas Technology,2013,35(5):288-291.
[6] 付子航,潘红梅. LNG 卸料管道专用隧道的安全设计[J]. 油气 储运,2010,29(6):423-426. FU Z H,PAN H M. Safety design for exclusive tunnel of LNG unloading pipeline[J]. Oil & Gas Storage and Transportation, 2010,29(6):423-426.
[7] TAKEUCHI T. Technical tasks for Tokyo Bay crossing[J]. Tunnels & Tunnelling International,2007,17(10):19-21.
[8] MINORU N,YOICHI M,KASAHARA S I. The startup of the latest LNG base[J]. Ogishima Factory in Tokyo Gas,1999, 41(7):15-22.
[9] 朱斌斌. 江苏LNG 接收站卸料速度与压力损失的关系[J]. 油 气储运,2012,31(增刊1):1-3. ZHU B B. Analysis of relationship between unloading rate and pressure loss in Jiangsu LNG receiving terminal[J]. Oil & Gas Storage and Transportation,2012,31(S1):1-3.
[10] 陈保东,李庆杰,洪丽娜,等. 液化天然气管道输送工艺参数的 计算[J]. 油气储运,2011,30(1):15-17. CHEN B D,LI Q J,HONG L N,et al. Calculation of transmission process parameters for LNG pipeline[J]. Oil &Gas Storage and Transportation,2011,30(1):15-17.
[11] 李兆慈,冷明,李光让,等. LNG 接收站卸料管道保冷层厚度优 化模拟[J]. 天然气工业,2015,35(3):98-102. LI Z C,LENG M,LI G R,et al. The optimization simulation of insulator thickness in LNG unloading pipelines[J]. Natural Gas Industry,2015,35(3):98-102.
[12] 朱校春. LNG 卸料管线预冷过程数值模拟[J]. 化工进展, 2016,35(2):383-388. ZHU X C. Numerical simulation of LNG unloading pipeline pre-cooling process[J]. Chemical Industry and Engineering Progress,2016,35(2):383-388.
[13] 贾士栋,吕俊,邓青. 浙江LNG 接收站卸料管线BOG 预冷模 拟研究[J]. 天然气工业,2013,33(3):84-88. JIA S D,LYU J,DENG Q. A simulation study of boil-off gas (BOG) pre-cooling process in unloading pipelines in an LNG terminal in Zhejiang[J]. Natural Gas Industry,2013,33(3): 84-88.
[1]贾保印 白改玲.大气压变化对蒸发气压缩机处理能力的影响[J].油气储运,2016,35(预出版):1.
JIA Baoyin,BAI Gailing.Impacts of changes in atmospheric pressure to processing capacity of BOG compressor[J].Oil & Gas Storage and Transportation,2016,35(4):1.
[2]彭延建 张超 肖立.LNG 卸料管道穿堤布置方案的设计[J].油气储运,2016,35(预出版):1.
PENG Yanjian,ZHANG Chao,XIAO Li.Design on the arrangement program of LNG unloading pipeline crossing seawall[J].Oil & Gas Storage and Transportation,2016,35(4):1.
[3]王赟,贺三,战永辉,等.移动式小型BOG增压再液化装置功耗的模拟计算[J].油气储运,2015,34(6):662.[doi:10.6047/j.issn.1000-8241.2015.06.021]
WANG Yun,HE San,ZHAN Yonghui,et al.Simulated calculation of power consumption of the mobile small-scale BOG compression and reliquefaction plant[J].Oil & Gas Storage and Transportation,2015,34(4):662.[doi:10.6047/j.issn.1000-8241.2015.06.021]
[4]薛倩 刘名瑞 肖文涛 王晓霖 张久久.LNG 接收站 BOG 处理工艺优化及能耗分析[J].油气储运,2016,35(预出版):1.
XUE Qian,LIU Mingrui,XIAO Wentao,et al.Optimization and energy consumption analysis of BOG treatment processes in LNG terminal[J].Oil & Gas Storage and Transportation,2016,35(4):1.
[5]薛倩,刘名瑞,肖文涛,等.LNG接收站BOG处理工艺优化及功耗分析[J].油气储运,2016,35(4):376.[doi:10.6047/j.issn.1000-8241.2016.04.005]
XUE Qian,LIU Mingrui,XIAO Wentao,et al.Optimization and energy consumption analysis of BOG treatment processes in LNG terminal[J].Oil & Gas Storage and Transportation,2016,35(4):376.[doi:10.6047/j.issn.1000-8241.2016.04.005]
[6]周怀发 申永亮 张兴 刘铭刚.基于层次分析与集对分析法的LNG 槽车区风险评价[J].油气储运,2019,38(预出版):1.
ZHOU Huaifa,SHEN Yongliang,ZHANG Xing,et al.Risk assessment on LNG tanker loading region based on analytical hierarchy process and set pair analysis theory[J].Oil & Gas Storage and Transportation,2019,38(4):1.
[7]徐波 段林杰 戴梦 李妍 闫锋 胡森.LNG 全运输系统运行可靠度计算方法[J].油气储运,2020,39(01):48.[doi:10.6047/j.issn.1000-8241.2020.01.007]
XU Bo,DUAN Linjie,DAI Meng,et al.A calculation method for the operation reliability of LNG whole transportation system[J].Oil & Gas Storage and Transportation,2020,39(4):48.[doi:10.6047/j.issn.1000-8241.2020.01.007]
[8]远双杰 孟凡鹏 安云朋 董平省 孙立刚 崔亚梅 张效铭.LNG 接收站工程中外输首站的设计探讨及优化[J].油气储运,2020,39(10):1.[doi:10.6047/j.issn.1000-8241.2020.10.014]
YUAN Shuangjie,MENG Fanpeng,AN Yunpeng,et al.Discussion and optimization of the design of the initial transportationstation in LNG receiving terminal project[J].Oil & Gas Storage and Transportation,2020,39(4):1.[doi:10.6047/j.issn.1000-8241.2020.10.014]
收稿日期:2015-6-29;改回日期:2016-1-8。
基金项目:中国海洋石油总公司青年创新课题“LNG 管道过堤相互影响研究”,JZTW2015KJ28。
作者简介:彭延建,男,工程师,1982年生,2010年硕士毕业于上海交通大学港口、海岸及近海工程专业,现主要从事LNG码头、储罐设计与研究工作。地址:北京市朝阳区太阳宫南街6号院中海油大厦C803,100028。电话:13716334698,Email:pengyj4@cnooc.com.cn